Classical Cryptography

Encodings and digital ciphers

Karst Koymans

Informatics Institute
University of Amsterdam
(version 22.9, 2023/02/23 19:42:39 UTC)

Friday, February 24, 2023

(1) Codes and ciphers

(2) Public codes
(3) From public codes to ciphers
(4) Digital ciphers

Outline

(1) Codes and ciphers

(2) Public codes

(3) From public codes to ciphers
(4) Digital ciphers

Codes and codebooks

- A code operates on semantic components
- Words, paragraphs, ...
- A codebook is a lookup table for codes
- Codes can be very hard to cryptanalyse
- Possible analysis methods
- Compare many different coded texts
- Use side channels (other available sources)
- Try to identify cribs
- Build up knowledge over time

An example codebook

Figure 2: Enlarged part

Figure 1: A code book

Encodings

- An encoding is a transformation of pieces of information into another representation for communication or storage
- An encoding is keyless
- An encoding can be public or secret
- The pieces of information need not have a semantic value like in a codebook and can be single letters or symbols

Ciphers and algorithms

- A cipher operates on meaningless components
- Individual letters or small groups of letters
- Bits or bytes
- Ciphers are syntax related
- Ciphers use algorithms
- with secret (or public) keys as parameters
- Encryption is the process of applying a cipher
- Decryption is the process of reversing a cipher

Outline

(7) Codes and ciphers

(2) Public codes

(3) From public codes to ciphers

4 Digital ciphers

Polygraphic versus polyliteral ciphers/encodings

- Polygraphic ciphers/encodings translate a block of letters into another block of letters, numbers or symbols
- An example is Porta's digraph system
- Polyliteral ciphers/encodings translate a single letter into a (larger, full) block of letters, numbers or symbols
- Polyliteral ciphers/encodings are in fact a simple substitution into another, often "bigger" but also "structured", alphabet which can henceforth be fractionated

Polybius Square

	1	2	3	4	5
1	A	B	C	D	E
2	F	G	H	IJ	K
3	L	M	N	O	P
4	Q	R	S	T	U
5	V	W	X	Y	Z

Figure 3: A simple polyliteral ${ }^{1}$ encoding (Polybius)

[^0]
A rectangular variant

	0	1	2	3	4	5	6	7	8
0		A	B	C	D	E	F	G	H
1	I	J	K	L	M	N	O	P	Q
2	R	S	T	U	V	W	X	Y	Z

Figure 4: A 0-based rectangular encoding for the full alphabet

But note it still uses the legacy $\mathrm{A}=01$ encoding

The standard legacy encoding

	0	1	2	3	4	5	6	7	8	9
0		A	B	C	D	E	F	G	H	I
1	J	K	L	M	N	O	P	Q	R	S
2	T	U	V	W	X	Y	Z			

Figure 5: A 0 -based encoding for the full alphabet, with unused space

- This encoding is just the regular legacy encoding translating $\mathrm{A}, \ldots, \mathrm{Z}$ to $01^{2}, \ldots, 26$
- 00, 27, 28 and 29 are available for more symbols if needed

[^1]
The standard modern encoding

	0	1	2	3	4	5	6	7	8	9
0	A	B	C	D	E	F	G	H	I	J
1	K	L	M	N	O	P	Q	R	S	T
2	U	V	W	X	Y	Z				

Figure 6: A 0-based encoding for the full alphabet, with unused space

This encoding is just the regular modern encoding translating A, \ldots, Z to $00, \ldots, 25$

A table for every base b numeral system (1)

Let us for instance look at base $b=3$

	00	01	02	10	11	12	20	21	22
0		A	B	C	D	E	F	G	H
1	I	J	K	L	M	N	O	P	Q
2	R	S	T	U	V	W	X	Y	Z

Figure 7: A ternary encoding for the full alphabet including a space
It would have been so nice ${ }^{3}$ to build computers based on the (balanced) ternary system instead of the usual binary one...

[^2]
A table for every base b numeral system (2)

Let us now look at the common binary base $b=2$

	000	001	010	011	100	101	110	111
00		A	B	C	D	E	F	G
01	H	I	J	K	L	M	N	O
10	P	Q	R	S	T	U	V	W
11	X	Y	Z					

Figure 8: A binary legacy encoding with room for $2^{5}=32$ symbols
Base32 is a modern variant with added symbols 2, 3, 4, 5, 6, 7

Bacon

Figure 9: Francis Bacon (1561-1626)

Source: https://en.wikipedia.org/wiki/Francis_Bacon

The Bacon code (steganography)

- Francis Bacon (1561-1626)
- First use a binary code with $a=0$ and $b=1$
- In the original we had $\mathrm{I}=\mathrm{J}$ and $\mathrm{U}=\mathrm{V}$, coding 24 letters with $\mathrm{A}=$ aaaaa,..., $\mathrm{Z}=\mathrm{babbb}$
- In modern variants the full alphabet is encoded ${ }^{4}$ with $\mathrm{A}=$ aaaaa,..., $\mathrm{Z}=$ bbaab
- SEconDIY HIDE The INDivIDuAL BitS by USiNg GLypH PROPeRTieS LiKE CoIOR, ITaLIZatlon, SIze, ...

[^3]
Baudot and Vernam

Figure 10: Émile Baudot (1845-1903)

Figure 11: Gilbert Vernam (1890-1960)

The Teletypewriter

- Émile Baudot (1845-1903)
- Baudot code
- Paper tape with punched holes
- 5 positions or bits
- Gilbert Vernam (1890-1960)
- Secures Baudot code transmission
- Uses a second (key)tape to be XORed with the plaintext tape
- Essentially creating a one-time pad

The wonderfully versatile XOR

- XOR is a binary (bitwise) operation
- Its nice properties derive from addition modulo 2
- Modulo 2 subtraction is the same as addition
- Encryption works by $c=p \oplus k$
- and since $k \oplus k=0$
- Decryption works by $p=c \oplus k$
- XOR also has a ternary, quaternary, ... variant
- Multiple inputs and one output
- Can be combined in arbitrary trees
- And with some care even in graphs with loops

Outline

(1) Codes and ciphers

(2) Public codes

(3) From public codes to ciphers

4 Digital ciphers

Length tricks

- Nulls
- Using encoding symbols with no corresponding plaintext
- Straddling ("with a leg on each side")
- Use different length encoding strings for different plaintext letters
- Usually the frequently occurring letters use a smaller length
- This will result in compression properties
- Enable fractionation
- Also called a monome-binome or monome-dinome cipher

The straddling checkerboard (1)

	0	1	2	3	4	5	6	7	8	9
				A	B	C	D	E	F	G
1	H	I	J	K	L	M	N	O	P	Q
2	R	S	T	U	V	W	X	Y	Z	

Figure 12: Why are the first three positions blank?

The straddling checkerboard (2)

	0	1	8	3	4	5	2	9	7	6
				T	R	E	A	S	O	N
0	B	C	D	F	G	H	I	J	K	L
1	M	P	Q	U	V	W	X	Y	Z	.
8	0	1	2	3	4	5	6	7	8	9

Figure 13: A variant that compresses (most occurring letters monome)

The straddling checkerboard (3)

	0	1	8	3	4
	A	E	I	O	U
5	B	C	D	F	G
2	H	K	L	M	N
9	P	Q	R	S	T
7	V	W	X	Y	Z

Figure 14: A variant where the 6 can be used as a null

The straddling checkerboard (4)

	0	1	8	3	4	5
2	A	B	C	D	E	F
9	G	H	I	J	K	L
7	M	N	O	P	Q	R
62	S	T	U	V	W	X
67	Y	Z	0	1	2	3
69	4	5	6	7	8	9

Figure 15: A dinome-trinome variant

The straddling checkerboard (5)

			Q	R	S	T	U
		V	W	X	Y	Z	
			E	T	N	R	O
L	F	A	A	B	C	D	F
M	G	B	G	H	I	J	K
N	H	C	L	M	P	Q	S
O	I	D	U	V	W	X	Y
P	K	E	Z	.	$\$$	$($)

Figure 16: Lots of homophones

Cryptanalysis of straddling checkerboards

- Identify dinome coordinates
- They occur more frequently
- They have lots of different contacts
- Look at repetition of four or more identical digits
- Look at patterns like ABAB
- Solve the resulting monoalphabetic substitution
- And possibly identify the key used

Fractionation after polyliteral encoding

- After having encoded letters one may consider subunits of polyliterals
- In the binary case those subunits could be bits
- More substitutions and especially transpositions can be executed
- That is what classic and modern block ciphers like DES and AES do
- The resulting new subunits might be assembled again into polyliterals
- Which can then possibly be translated back to the original alphabet

Fractionating system example: ADFGVX (1)

Letter	Morse code
\mathbf{A}	$\bullet-$
\mathbf{D}	- • •
\mathbf{F}	$\bullet \bullet$
\mathbf{G}	$\mathbf{-}$
\mathbf{V}	\bullet
$\mathbf{\bullet}$	\bullet
\mathbf{X}	$\mathbf{-}$

Also see https://www.johndcook.com/blog/2020/02/22/adfgvx/

Fractionating system example: ADFGVX (2)

	A	D	F	G	V	X
A	b	5	x	q	j	c
D	6	y	r	k	d	7
F	z	s	l	e	8	1
G	t	m	f	9	2	u
V	n	g	0	3	v	o
X	h	a	4	w	p	i

Figure 17: ADFGVX 6-by-6 square

Fractionating system example: ADFGVX (3)

- First use the polyliteral ADFGVX square
- Then use a keyed columnar transposition
- Example encryption with keyword GANDHI and square filled as in previous slide
- AGGAV AXGDA DFGGA FXFFV

VXXFG XXVGF VAAXX ADAXG FFFFV D

- Exercise: decode this message

Outline

```
(7) Codes and ciphers
(2) Public codes
(3) From public codes to ciphers
```

(4) Digital ciphers

Shannon

Figure 18: Claude Shannon (1916-2001)

Shannon's theory (1)

- Confusion
- Each ciphertext bit has complex (nonlinear) relations with the plaintext and key bits
- Mostly achieved by substitutions
- Diffusion
- Each plaintext or key bit affects many bits of the ciphertext
- Mostly achieved by transpositions

Shannon's theory (2)

- Mixing transformation (function) F
- Non-secret, confusing and diffusing transformation
- A transposition (T), followed by an alternation of linear Hill (H) maps and substitutions (S)
- $F=H \circ S \circ H \circ S \circ H \circ T$
- Both T and H operate on full blocks of letters
- S operates componentwise, on each individual letter

Figure 19: Shannon's mixing function F

Shannon's theory (3)

- Shannon's cipher construction
- Uses one, two or even more mixing transformations
- For two mixings this is $C=W_{k_{3}} \circ F_{2} \circ V_{k_{2}} \circ F_{1} \circ U_{k_{1}}$
- k_{1}, k_{2}, k_{3} is keying material for simple ciphers U, V, W
- Here secret keys enter the scene by adding more confusion, typically through the simple substitutions U, V and W

Figure 20: Shannon's cipher

Figure 21: Shannon's more secure cipher

SP-networks

- SP-networks resemble Shannon's construction
- Works with bits instead of larger alphabets
- Uses large diffusing transpositions of bits
- Uses smaller confusing polygraphic substitutions
- Works on sequences of bits (bytes, nibbles, ...)
- Alternates these in a number of rounds
- Mixes in (parts of) the key at the start of each round
- Mixing uses simple XORs
- Also at the end the key is once more mixed in

Figure 22: SP network

Feistel

Figure 23: Horst Feistel (1915-1990)

Source: https://www.ithistory.org/honor-roll/mr-horst-feistel

Figure 24: Feistel cipher construction

Feistel networks (building block)

Figure 25: Building block (also used upside down)

Feistel networks (first few steps)

Figure 26: $F_{2}=\mathcal{F}\left(K_{0}, F_{1}\right) \oplus F_{0} ; F_{3}=\mathcal{F}\left(K_{1}, F_{2}\right) \oplus F_{1}$

Feistel network encryption sequence

Figure 27: $F_{n+2}=\mathcal{F}\left(K_{n}, F_{n+1}\right) \oplus F_{n}$

Simpler Feistel network building block

Figure 28: Building block (also used upside down)

Simpler Feistel network first steps

Figure 29: $F_{2}=\mathcal{F}\left(K_{0}, F_{1}\right) \oplus F_{0} ; F_{3}=\mathcal{F}\left(K_{1}, F_{2}\right) \oplus F_{1}$

Simpler Feistel network encryption sequence

Figure 30: $F_{n+2}=\mathcal{F}\left(K_{n}, F_{n+1}\right) \oplus F_{n}$

Hence Feistel is "Fibonacci"-like

[^0]: ${ }^{1}$ Because we use digits this is also called a dinome substitution

[^1]: ${ }^{2}$ One may or may not remove leading 0 s, treating them as numbers or strings

[^2]: ${ }^{3}$ The Russians tried to do so: https://en.wikipedia.org/wiki/Setun

[^3]: ${ }^{4}$ Holden's book uses $A=$ aaaab, $\ldots, Z=b b a b a$

