Classical Cryptography Encodings and digital ciphers

Karst Koymans

Informatics Institute University of Amsterdam (version 22.9, 2023/02/23 19:42:39 UTC)

Friday, February 24, 2023

Table of Contents

Codes and ciphers

Public codes

From public codes to ciphers

Digital ciphers

Codes and codebooks

- A code operates on semantic components
 - ▶ Words, paragraphs, ...
- A codebook is a lookup table for codes
- Codes can be very hard to cryptanalyse
- Possible analysis methods
 - Compare many different coded texts
 - Use side channels (other available sources)
 - Try to identify cribs
 - Build up knowledge over time

An example codebook

229. Doute	28; fai 286 faire	344 ier
231	280 yane	345 Les 346 il
232 da	287 Jau 288 Je. 289 Ji	347 ils
2 <i>33.</i> E	289 4	34 8

Figure 2: Enlarged part

Figure 1: A code book

Source: Slides Hans van der Meer

Encodings

- An encoding is a transformation of pieces of information into another representation for communication or storage
- An encoding is keyless
- An encoding can be **public** or **secret**
- The pieces of information need not have a semantic value like in a codebook and can be single letters or symbols

Ciphers and algorithms

- A cipher operates on meaningless components
 - Individual letters or small groups of lettersBits or bytes
- Ciphers are syntax related
- Ciphers use algorithms
 - with secret (or public) keys as parameters
- Encryption is the process of applying a cipher
- Decryption is the process of reversing a cipher

Polygraphic versus polyliteral ciphers/encodings

- Polygraphic ciphers/encodings translate a block of letters into another block of letters, numbers or symbols
 - An example is Porta's digraph system
- Polyliteral ciphers/encodings translate a single letter into a (larger, full) block of letters, numbers or symbols
 - Polyliteral ciphers/encodings are in fact a simple substitution into another, often "bigger" but also "structured", alphabet which can henceforth be fractionated

Polybius Square

	1	2 B G M R W	3	4	5
1	А	В	С	D	Е
2	F	G	Н	IJ	К
3	L	Μ	Ν	0	Р
4	Q	R	S	Т	U
5	V	W	Х	Y	Ζ

Figure 3: A simple polyliteral¹encoding (Polybius)

¹Because we use digits this is also called a dinome substitution

A rectangular variant

	0	1	2	3	4	5	6	7	8
0		А	В	С	D	Е	F	G	Н
1	1	J	Κ	L	Μ	N W	0	Р	Q
2	R	S	Т	U	V	W	Х	Y	Ζ

Figure 4: A 0-based rectangular encoding for the full alphabet

But note it still uses the legacy A=01 encoding

The standard legacy encoding

					3						
-	0		А	В	С	D	Е	F	G	Н	I
	1	J	К	L	Μ	Ν	0	Р	Q	R	S
	2	Т	U	V	M W	Х	Y	Ζ			

Figure 5: A 0-based encoding for the full alphabet, with unused space

- This encoding is just the regular legacy encoding translating A, ..., Z to 01², ..., 26
- ▶ 00, 27, 28 and 29 are available for more symbols if needed

²One may or may not remove leading 0s, treating them as numbers or strings

The standard modern encoding

	0	1	2	3	4	5	6	7	8	9
0	Α	В	C M W	D	Е	F	G	Н	I	J
1	К	L	Μ	Ν	0	Р	Q	R	S	Т
2	U	V	W	Х	Υ	Ζ				

Figure 6: A 0-based encoding for the full alphabet, with unused space

This encoding is just the regular modern encoding translating A, ..., Z to 00, ..., 25

A table for every base b numeral system (1)

Let us for instance look at base b = 3

	00	01	02	10	11	12	20	21	22
0	-	А	В	С	D	Е	F	G	Н
1	I	J	К	L	Μ	Ν	0	Р	Q
2	R	S	Т	U	V	E N W	Х	Y	Ζ

Figure 7: A ternary encoding for the full alphabet including a space

It would have been so nice³ to build computers based on the (balanced) ternary system instead of the usual binary one...

³The Russians tried to do so: https://en.wikipedia.org/wiki/Setun

A table for every base b numeral system (2)

Let us now look at the common binary base b = 2

					100			
00		А	В	С	D	Е	F	G
01	Н	I	J	Κ	L	Μ	Ν	0
10	Р	Q	R	S	L T	U	V	W
11	X	Y	Ζ					

Figure 8: A binary legacy encoding with room for $2^5 = 32$ symbols

Base32 is a modern variant with added symbols 2, 3, 4, 5, 6, 7

Bacon

Figure 9: Francis Bacon (1561 – 1626)

Source: https://en.wikipedia.org/wiki/Francis_Bacon

The Bacon code (steganography)

- ▶ Francis Bacon (1561–1626)
- First use a binary code with a=0 and b=1
 - In the original we had I=J and U=V, coding 24 letters with A=aaaaa, ..., Z=babbb
 - In modern variants the full alphabet is encoded⁴ with A=aaaaa, ..., Z=bbaab
- SEconDIY HIDE The INDivIDuAL BitS by USiNg GLypH PROPeRTieS LiKE ColOR, ITaLIZatlon, Slze, ...

Baudot and Vernam

Figure 11: Gilbert Vernam (1890 - 1960)

Figure 10: Émile Baudot (1845 - 1903)

Source: https://en.wikipedia.org/wiki/Émile_Baudot Source: https://en.wikipedia.org/wiki/Gilbert_Vernam

The Teletypewriter

- Émile Baudot (1845–1903)
 - Baudot code
 - Paper tape with punched holes
 - ▶ 5 positions or bits
- ► Gilbert Vernam (1890-1960)
 - Secures Baudot code transmission
 - Uses a second (key)tape to be XORed with the plaintext tape
 - Essentially creating a one-time pad

The wonderfully versatile XOR

- XOR is a binary (bitwise) operation
 - Its nice properties derive from addition modulo 2
 - Modulo 2 subtraction is the same as addition
 - Encryption works by $c = p \oplus k$
 - and since $k \oplus k = 0$
 - Decryption works by $p = c \oplus k$
- ► XOR also has a ternary, quaternary, ... variant
 - Multiple inputs and one output
 - Can be combined in arbitrary trees
 - And with some care even in graphs with loops

Length tricks

- Nulls
 - Using encoding symbols with no corresponding plaintext
- Straddling ("with a leg on each side")
 - Use different length encoding strings for different plaintext letters
 - Usually the frequently occurring letters use a smaller length
 - This will result in compression properties
 - Enable fractionation
 - Also called a monome-binome or monome-dinome cipher

The straddling checkerboard (1)

	0	1	2	3	4	5	6	7	8	9
				А	В	С	D	Е	F	G
1	Н	I	J	К	L	Μ	Ν	0	Р	Q
2	R	S	Т	U	V	M W	Х	Y	Ζ	

Figure 12: Why are the first three positions blank?

The straddling checkerboard (2)

						5				
				Т	R	Е	Α	S	0	Ν
0	В	С	D	F	G	Н	I	J	К	L
1	Μ	Р	Q	U	V	H W 5	Х	Y	Ζ	
8	0	1	2	3	4	5	6	7	8	9

Figure 13: A variant that compresses (most occurring letters monome)

Source: slides Hans van der Meer

The straddling checkerboard (3)

	0	1 E C K Q W	8	3	4
	A	Е	Ι	0	U
5	В	С	D	F	G
2	Н	К	L	Μ	Ν
9	Р	Q	R	S	Т
7	V	W	Х	Υ	Ζ

Figure 14: A variant where the 6 can be used as a null

Source: slides Hans van der Meer

The straddling checkerboard (4)

	0	1	8	3	4	5
2	A	В	С	D	Е	F
9	G	Н	I	J	К	L
7	M	Ν	0	Р	Q	R
62	S	Т	U	V	W	Х
67	Y	Ζ	0	1	2	3
69	4	5	6	7	E K Q W 2 8	9

Figure 15: A dinome-trinome variant

Source: slides Hans van der Meer

The straddling checkerboard (5)

			Q	R	S	Т	U
			V	W	S X	Y	Ζ
			E	Т	Ν	R	0
L	F	А	A	В	С	D	F
Μ	G	В	G	Н	I	J	К
Ν	Н	С	L	Μ	Р	Q	S
0	I	D	U	V	W	Х	Υ
Р	К	Е	Z	•	N C I P W \$	()

Figure 16: Lots of homophones

Source: slides Hans van der Meer

Cryptanalysis of straddling checkerboards

Fractionation after polyliteral encoding

- Identify dinome coordinates
 - They occur more frequently
 - They have lots of different contacts
 - Look at repetition of four or more identical digits
 - Look at patterns like ABAB
- Solve the resulting monoalphabetic substitution
- And possibly identify the key used

- After having encoded letters one may consider subunits of polyliterals
 In the binary case those subunits could be bits
- More substitutions and especially transpositions can be executed
 - ▶ That is what classic and modern block ciphers like DES and AES do
- ▶ The resulting new subunits might be assembled again into polyliterals
 - Which can then possibly be translated back to the original alphabet

Fractionating system example: ADFGVX (1)

Letter	Morse code				
A	• -				
D	- • •				
F	••-•				
G	•				
V	•••-				
X	- • • -				

Also see https://www.johndcook.com/blog/2020/02/22/adfgvx/

Fractionating system example: ADFGVX (2)

	A	D	F	G	V	Х
А	b	5	х	q	j	С
D	6	у	r	k	d	7
F	z	S	1	e	8	1
G	t	m	f	9	2	u
V	n	g	0	3	v	0
Х	h	D 5 y s m g a	4	w	р	i

Figure 17: ADFGVX 6-by-6 square

Fractionating system example: ADFGVX (3)

Shannon

- First use the polyliteral ADFGVX square
- Then use a keyed columnar transposition
- Example encryption with keyword GANDHI and square filled as in previous slide
 - AGGAV AXGDA DFGGA FXFFV VXXFG XXVGF VAAXX ADAXG FFFFV D
- Exercise: decode this message

Figure 18: Claude Shannon (1916 - 2001)

Source: https://en.wikipedia.org/wiki/Claude_Shannon

Shannon's theory (1)

- Confusion
 - Each ciphertext bit has complex (nonlinear) relations with the plaintext and key bits
 - Mostly achieved by substitutions
- Diffusion
 - Each plaintext or key bit affects many bits of the ciphertext
 - Mostly achieved by transpositions

Shannon's theory (2)

- Mixing transformation (function) F
 - Non-secret, confusing and diffusing transformation
 - A transposition (T), followed by an alternation of linear Hill (H) maps and substitutions (S)
 - $F = H \circ S \circ H \circ S \circ H \circ T$
 - Both T and H operate on full blocks of letters
 - S operates componentwise, on each individual letter

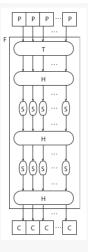


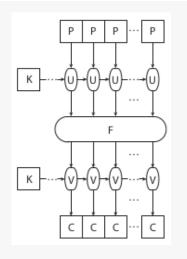
Figure 19: Shannon's mixing function F

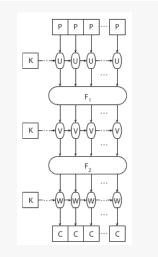
Source: The Mathematics of Secrets by Joshua Holden

Shannon's theory (3)

Shannon's cipher construction

- Uses one, two or even more mixing transformations
 - For two mixings this is $C = W_{k_3} \circ F_2 \circ V_{k_2} \circ F_1 \circ U_{k_1}$
 - \blacktriangleright k_1, k_2, k_3 is keying material for simple ciphers U, V, W
 - Here secret keys enter the scene by adding more confusion, typically through the simple substitutions U, V and W





SP-networks

- SP-networks resemble Shannon's construction
 - Works with bits instead of larger alphabets
- Uses large diffusing transpositions of bits
- Uses smaller confusing polygraphic substitutions
 - ► Works on sequences of bits (bytes, nibbles, ...)
- Alternates these in a number of rounds
- Mixes in (parts of) the key at the start of each round
 - Mixing uses simple XORs
 - Also at the end the key is once more mixed in

Figure 20: Shannon's cipher

Figure 21: Shannon's more secure cipher

Source: The Mathematics of Secrets by Joshua Holden

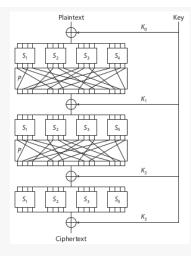


Figure 22: SP network

Source: The Mathematics of Secrets by Joshua Holden

Feistel

Figure 23: Horst Feistel (1915 – 1990)

Source: https://www.ithistory.org/honor-roll/mr-horst-feistel

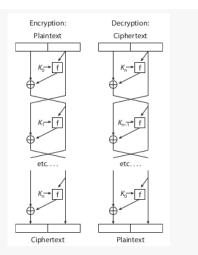


Figure 24: Feistel cipher construction

Source: The Mathematics of Secrets by Joshua Holden

Feistel networks (building block)

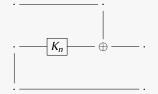


Figure 25: Building block (also used upside down)

Feistel networks (first few steps)

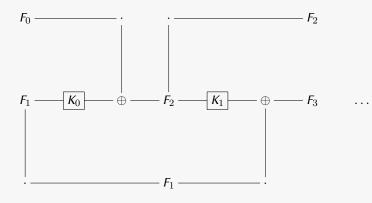


Figure 26: $F_2 = \mathcal{F}(K_0, F_1) \oplus F_0; F_3 = \mathcal{F}(K_1, F_2) \oplus F_1$

Feistel network encryption sequence

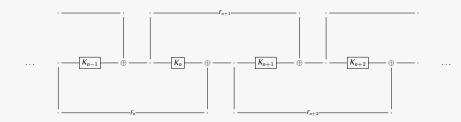


Figure 27: $F_{n+2} = \mathcal{F}(K_n, F_{n+1}) \oplus F_n$

Simpler Feistel network building block

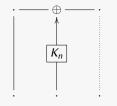


Figure 28: Building block (also used upside down)

Simpler Feistel network first steps

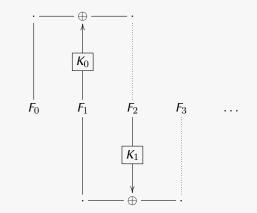


Figure 29: $F_2 = \mathcal{F}(K_0, F_1) \oplus F_0; F_3 = \mathcal{F}(K_1, F_2) \oplus F_1$

Simpler Feistel network encryption sequence

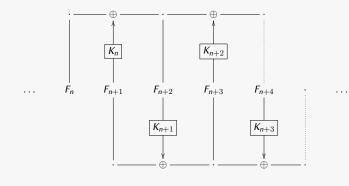


Figure 30: $F_{n+2} = \mathcal{F}(K_n, F_{n+1}) \oplus F_n$ Hence Feistel is "Fibonacci"-like