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Codes and codebooks

I A code operates on semantic components
I Words, paragraphs, …

I A codebook is a lookup table for codes
I Codes can be very hard to cryptanalyse
I Possible analysis methods

I Compare many different coded texts
I Use side channels (other available sources)
I Try to identify cribs
I Build up knowledge over time

An example codebook

Figure 1: A code book

Figure 2: Enlarged part

Source: Slides Hans van der Meer



Encodings

I An encoding is a transformation of pieces of information
into another representation for communication or storage

I An encoding is keyless
I An encoding can be public or secret
I The pieces of information need not have a semantic value

like in a codebook and can be single letters or symbols

Ciphers and algorithms

I A cipher operates on meaningless components
I Individual letters or small groups of letters
I Bits or bytes

I Ciphers are syntax related
I Ciphers use algorithms

I with secret (or public) keys as parameters

I Encryption is the process of applying a cipher
I Decryption is the process of reversing a cipher

Polygraphic versus polyliteral ciphers/encodings

I Polygraphic ciphers/encodings translate a block of letters
into another block of letters, numbers or symbols
I An example is Porta’s digraph system

I Polyliteral ciphers/encodings translate a single letter
into a (larger, full) block of letters, numbers or symbols
I Polyliteral ciphers/encodings are in fact a simple substitution into another, often

“bigger” but also “structured”, alphabet which can henceforth be fractionated

Polybius Square

1 2 3 4 5
1 A B C D E
2 F G H IJ K
3 L M N O P
4 Q R S T U
5 V W X Y Z

Figure 3: A simple polyliteral1encoding (Polybius)

1Because we use digits this is also called a dinome substitution



A rectangular variant

0 1 2 3 4 5 6 7 8
0 A B C D E F G H
1 I J K L M N O P Q
2 R S T U V W X Y Z

Figure 4: A 0-based rectangular encoding for the full alphabet

But note it still uses the legacy A=01 encoding

The standard legacy encoding

0 1 2 3 4 5 6 7 8 9
0 A B C D E F G H I
1 J K L M N O P Q R S
2 T U V W X Y Z

Figure 5: A 0-based encoding for the full alphabet, with unused space

I This encoding is just the regular legacy encoding
translating A, …, Z to 012, …, 26

I 00, 27, 28 and 29 are available for more symbols if needed

2One may or may not remove leading 0s, treating them as numbers or strings

The standard modern encoding

0 1 2 3 4 5 6 7 8 9
0 A B C D E F G H I J
1 K L M N O P Q R S T
2 U V W X Y Z

Figure 6: A 0-based encoding for the full alphabet, with unused space

This encoding is just the regular modern encoding
translating A, …, Z to 00, …, 25

A table for every base b numeral system (1)

Let us for instance look at base b = 3

00 01 02 10 11 12 20 21 22
0 ␣ A B C D E F G H
1 I J K L M N O P Q
2 R S T U V W X Y Z

Figure 7: A ternary encoding for the full alphabet including a space

It would have been so nice3 to build computers based on the
(balanced) ternary system instead of the usual binary one…

3The Russians tried to do so: https://en.wikipedia.org/wiki/Setun

https://en.wikipedia.org/wiki/Setun


A table for every base b numeral system (2)

Let us now look at the common binary base b = 2

000 001 010 011 100 101 110 111
00 A B C D E F G
01 H I J K L M N O
10 P Q R S T U V W
11 X Y Z

Figure 8: A binary legacy encoding with room for 25 = 32 symbols

Base32 is a modern variant with added symbols 2, 3, 4, 5, 6, 7

Bacon

Figure 9: Francis Bacon (1561 – 1626)

Source: https://en.wikipedia.org/wiki/Francis_Bacon

The Bacon code (steganography)

I Francis Bacon (1561–1626)
I First use a binary code with a=0 and b=1

I In the original we had I=J and U=V, coding 24 letters
with A=aaaaa, …, Z=babbb

I In modern variants the full alphabet is encoded4

with A=aaaaa, …, Z=bbaab

I SEconDlY HIDE The INDivIDuAL BitS by USiNg GLypH PROPeRTieS LiKE ColOR,
ITaLIZatIon, SIze, …

4Holden’s book uses A=aaaab, …, Z=bbaba

Baudot and Vernam

Figure 10: Émile Baudot (1845 – 1903)

Figure 11: Gilbert Vernam (1890 – 1960)

Source: https://en.wikipedia.org/wiki/Émile_Baudot

Source: https://en.wikipedia.org/wiki/Gilbert_Vernam

https://en.wikipedia.org/wiki/Francis_Bacon
https://en.wikipedia.org/wiki/%C3%89mile_Baudot
https://en.wikipedia.org/wiki/Gilbert_Vernam


The Teletypewriter

I Émile Baudot (1845–1903)
I Baudot code
I Paper tape with punched holes
I 5 positions or bits

I Gilbert Vernam (1890–1960)
I Secures Baudot code transmission
I Uses a second (key)tape to be XORed with the plaintext tape
I Essentially creating a one-time pad

The wonderfully versatile XOR

I XOR is a binary (bitwise) operation
I Its nice properties derive from addition modulo 2
I Modulo 2 subtraction is the same as addition
I Encryption works by c = p ⊕ k

I and since k ⊕ k = 0

I Decryption works by p = c ⊕ k
I XOR also has a ternary, quaternary, … variant

I Multiple inputs and one output
I Can be combined in arbitrary trees

I And with some care even in graphs with loops

Length tricks

I Nulls
I Using encoding symbols with no corresponding plaintext

I Straddling (“with a leg on each side”)
I Use different length encoding strings for different plaintext letters
I Usually the frequently occurring letters use a smaller length
I This will result in compression properties
I Enable fractionation
I Also called a monome-binome or monome-dinome cipher

The straddling checkerboard (1)

0 1 2 3 4 5 6 7 8 9
A B C D E F G

1 H I J K L M N O P Q
2 R S T U V W X Y Z

Figure 12: Why are the first three positions blank?



The straddling checkerboard (2)

0 1 8 3 4 5 2 9 7 6
T R E A S O N

0 B C D F G H I J K L
1 M P Q U V W X Y Z .
8 0 1 2 3 4 5 6 7 8 9

Figure 13: A variant that compresses (most occurring letters monome)

Source: slides Hans van der Meer

The straddling checkerboard (3)

0 1 8 3 4
A E I O U

5 B C D F G
2 H K L M N
9 P Q R S T
7 V W X Y Z

Figure 14: A variant where the 6 can be used as a null

Source: slides Hans van der Meer

The straddling checkerboard (4)

0 1 8 3 4 5
2 A B C D E F
9 G H I J K L
7 M N O P Q R
62 S T U V W X
67 Y Z 0 1 2 3
69 4 5 6 7 8 9

Figure 15: A dinome-trinome variant

Source: slides Hans van der Meer

The straddling checkerboard (5)
Q R S T U
V W X Y Z
E T N R O

L F A A B C D F
M G B G H I J K
N H C L M P Q S
O I D U V W X Y
P K E Z . $ ( )

Figure 16: Lots of homophones

Source: slides Hans van der Meer



Cryptanalysis of straddling checkerboards

I Identify dinome coordinates
I They occur more frequently
I They have lots of different contacts
I Look at repetition of four or more identical digits
I Look at patterns like ABAB

I Solve the resulting monoalphabetic substitution
I And possibly identify the key used

Fractionation after polyliteral encoding

I After having encoded letters one may consider subunits of polyliterals
I In the binary case those subunits could be bits

I More substitutions and especially transpositions can be executed
I That is what classic and modern block ciphers like DES and AES do

I The resulting new subunits might be assembled again into polyliterals
I Which can then possibly be translated back to the original alphabet

Fractionating system example: ADFGVX (1)

Letter Morse code

A · -
D - · ·
F · · - ·
G - - ·
V · · · -
X - · · -

Also see https://www.johndcook.com/blog/2020/02/22/adfgvx/

Fractionating system example: ADFGVX (2)

A D F G V X
A b 5 x q j c
D 6 y r k d 7
F z s l e 8 1
G t m f 9 2 u
V n g 0 3 v o
X h a 4 w p i

Figure 17: ADFGVX 6-by-6 square

https://www.johndcook.com/blog/2020/02/22/adfgvx/


Fractionating system example: ADFGVX (3)

I First use the polyliteral ADFGVX square
I Then use a keyed columnar transposition
I Example encryption with keyword GANDHI and square filled as in previous slide

I AGGAV AXGDA DFGGA FXFFV
VXXFG XXVGF VAAXX ADAXG
FFFFV D

I Exercise: decode this message

Shannon

Figure 18: Claude Shannon (1916 – 2001)

Source: https://en.wikipedia.org/wiki/Claude_Shannon

Shannon’s theory (1)

I Confusion
I Each ciphertext bit has complex (nonlinear) relations with the plaintext and key bits
I Mostly achieved by substitutions

I Diffusion
I Each plaintext or key bit affects many bits of the ciphertext
I Mostly achieved by transpositions

Shannon’s theory (2)

I Mixing transformation (function) F
I Non-secret, confusing and diffusing transformation
I A transposition (T), followed by an alternation of

linear Hill (H) maps and substitutions (S)
I F = H ◦ S ◦ H ◦ S ◦ H ◦ T
I Both T and H operate on full blocks of letters
I S operates componentwise, on each individual letter

https://en.wikipedia.org/wiki/Claude_Shannon


Figure 19: Shannon’s mixing function F

Source: The Mathematics of Secrets by Joshua Holden

Shannon’s theory (3)

I Shannon’s cipher construction
I Uses one, two or even more mixing transformations

I For two mixings this is C = Wk3 ◦ F2 ◦ Vk2 ◦ F1 ◦ Uk1
I k1, k2, k3 is keying material for simple ciphers U,V ,W
I Here secret keys enter the scene by adding more confusion,

typically through the simple substitutions U, V and W

Figure 20: Shannon’s cipher Figure 21: Shannon’s more secure cipher

Source: The Mathematics of Secrets by Joshua Holden

SP-networks

I SP-networks resemble Shannon’s construction
I Works with bits instead of larger alphabets

I Uses large diffusing transpositions of bits
I Uses smaller confusing polygraphic substitutions

I Works on sequences of bits (bytes, nibbles, …)

I Alternates these in a number of rounds
I Mixes in (parts of) the key at the start of each round

I Mixing uses simple XORs
I Also at the end the key is once more mixed in



Figure 22: SP network

Source: The Mathematics of Secrets by Joshua Holden

Feistel

Figure 23: Horst Feistel (1915 – 1990)

Source: https://www.ithistory.org/honor-roll/mr-horst-feistel

Figure 24: Feistel cipher construction

Source: The Mathematics of Secrets by Joshua Holden

Feistel networks (building block)

· ·

· Kn ⊕ ·

· ·

Figure 25: Building block (also used upside down)

https://www.ithistory.org/honor-roll/mr-horst-feistel


Feistel networks (first few steps)

F0 · · F2

F1 K0 ⊕ F2 K1 ⊕ F3 . . .

· F1 ·

Figure 26: F2 = F(K0, F1)⊕ F0; F3 = F(K1, F2)⊕ F1

Feistel network encryption sequence

· · · Fn+1 · · ·

. . . · Kn−1 ⊕ · Kn ⊕ · Kn+1 ⊕ · Kn+2 ⊕ · . . .

· Fn · · Fn+2 ·

Figure 27: Fn+2 = F(Kn, Fn+1)⊕ Fn

Simpler Feistel network building block

· ⊕ ·

Kn

OO

· · ·

Figure 28: Building block (also used upside down)

Simpler Feistel network first steps

· ⊕ ·

K0

OO

F0 F1 F2 F3 . . .

K1

��
· ⊕ ·

Figure 29: F2 = F(K0, F1)⊕ F0; F3 = F(K1, F2)⊕ F1



Simpler Feistel network encryption sequence

· ⊕ · ⊕ ·

Kn

OO

Kn+2

OO

. . . Fn Fn+1 Fn+2 Fn+3 Fn+4 · . . .

Kn+1

��

Kn+3

��
· ⊕ · ⊕ ·

Figure 30: Fn+2 = F(Kn, Fn+1)⊕ Fn

Hence Feistel is “Fibonacci”-like
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