Classical Cryptography

Basics: monoalphabetic substitution

Karst Koymans

Informatics Institute
University of Amsterdam
(version 22.4, 2023/02/06 11:06:14 UTC)

Friday, February 10, 2023
(1) The classic Caesar substitution cipher

- Caesar's system
- Alphabet encoding
- Modular arithmetic
- Mathematical formulation
- Caesar cryptanalysis
(2) General monoalphabetic systems
- Generating alphabets
- Some number theory
- Composition of ciphers
(3) Extension of the alphabet
- Classic systems
- The Hill cipher

Outline

(1) The classic Caesar substitution cipher

- Caesar's system
- Alphabet encoding
- Modular arithmetic
- Mathematical formulation
- Caesar cryptanalysis
(2) General monoalphabetic systems
- Generating alphabets
- Some number theory
- Composition of ciphers
(3) Extension of the alphabet
- Classic systems
- The Hill cipher

Outline

(1) The classic Caesar substitution cipher

- Caesar's system
- Alphabet encoding
- Modular arithmetic
- Mathematical formulation
- Caesar cryptanalysis
(2) General monoalphabetic systems
- Generating alphabets
- Some number theory
- Composition of ciphers
(3) Extension of the alphabet
- Classic systems
- The Hill cipher

Caesar wants to hide his plans

Caesar's cryptosystem

Source: Slides Hans van der Meer

Interception and cryptanalysis


```
DWWDFN R& WKH LムXV RI PDVFK
<VV<&M QP VJ& KFWU <H \diamondくT&J
BUUB>V P\diamond UIF J<VT P4 NBSDI
&TT&<K \diamondN TH& IDUS \diamondF M&R<H
```


Who notices the peculiarities here?

Caesar encryption

- Caesar encryption is a forward ${ }^{1}$ rotation of the alphabet by 3 places

abcdefghijklmnopqrstuvwxyz
DEFGHIJKLMNOPQRSTUVWXYZABC

Figure 1: Rotation by 3 positions

- An example encryption

$$
\begin{array}{|l}
\text { an example encryption } \\
\text { DQ HADPSOH HQFUBSWLRQ } \\
\hline
\end{array}
$$

Figure 2: Encryption of "an example encryption"

[^0]
Caesar decryption

- Caesar decryption works by turning around the encryption process

$$
\begin{aligned}
& \text { DEFGHIJKLMNOPQRSTUVWXYZABC } \\
& \text { abcdefghijklmnopqrstuvwxyz }
\end{aligned}
$$

Figure 3: Encryption turned around (backward rotation by 3 places)

ABCDEFGHIJKLMNOPQRSTUVWXYZ
xyzabcdefghijklmnopqrstuvw

Figure 4: The same decryption reordered

Outline

(1) The classic Caesar substitution cipher

- Caesar's system
- Alphabet encoding
- Modular arithmetic
- Mathematical formulation
- Caesar cryptanalysis
(2) General monoalphabetic systems
- Generating alphabets
- Some number theory
- Composition of ciphers
(3) Extension of the alphabet
- Classic systems
- The Hill cipher

Encoding (numbering) the alphabet

| | a | b | c | d | e | f | g | h | i | j | k | l | m | n | o | p | q | r | s | t | u | v | w | x | y | z |
| :--- | :---: |
| modern | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 |
| legacy | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 |

- Modern mathematics starts counting at 0
- The legacy variant, starting at 1 , is equivalent to ordering the alphabet as zabcdefghijklmnopqrstuvwxy
- This is because, when rotating the alphabet, we consider $26=0$

Outline

(1) The classic Caesar substitution cipher

- Caesar's system
- Alphabet encoding
- Modular arithmetic
- Mathematical formulation
- Caesar cryptanalysis
(2) General monoalphabetic systems
- Generating alphabets
- Some number theory
- Composition of ciphers
(3) Extension of the alphabet
- Classic systems
- The Hill cipher

Clock arithmetic

$24=0($ or maybe $12=0)$

- $\mathbb{Z}_{24}=\mathbb{Z} / 24 \mathbb{Z}=\{0,1,2, \ldots, 23\}$
- $23+1 \equiv 24 \equiv 0(\bmod 24)$

Definition $(n \in \mathbb{N}, n>1, a, b \in \mathbb{Z})$
$a \equiv b(\bmod n) \Longleftrightarrow n \mid(a-b) \Longleftrightarrow \exists k \in \mathbb{Z}(k \cdot n=(a-b))$

Theorem

". $\equiv .(\bmod n)$ " is an equivalence relation on \mathbb{Z}, in fact a congruence.
$\mathbb{Z}_{n}=\mathbb{Z} / n \mathbb{Z}=\{0,1, \ldots, n-1\}$ is the set of integers modulo n,
using the standard representatives for the equivalence classes.

Corollary

Addition and multiplication can be performed $(\bmod n)$ as usual.

Clock arithmetic

Examples

$$
\begin{gathered}
22+5 \equiv 3 \quad(\bmod 24) \\
22 \cdot 5 \equiv 110 \equiv 14 \quad(\bmod 24) \\
-2 \cdot 5 \equiv-10 \equiv 14 \quad(\bmod 24) \\
2 \cdot 12 \equiv 24 \equiv 0 \quad(\bmod 24) \\
2 \not \equiv 0 \quad(\bmod 24) \\
12 \not \equiv 0 \quad(\bmod 24)
\end{gathered}
$$

\mathbb{Z}_{24} has divisors of zero or zero divisors, which is considered an unwanted property in general.

Clock arithmetic

Convention

$(\bmod n)$ as a function

The function application $a(\bmod n)$ means the unique b such that $0 \leq b<n$ and $a \equiv b(\bmod n)$, as a relation.

- The use of $(\bmod n)$ both as a binary relation
as well as a function can be confusing:

$$
\begin{aligned}
& (a(\bmod n) \equiv a)(\bmod n) \\
& a(\bmod n)=(a(\bmod n))
\end{aligned}
$$

Who's afraid of zero?

or the AM/PM mess

- Splitting up 24 hours as $2 \cdot 12$ hours the sensible way
- 0:00 AM (midnight), 1:00 AM, ..., 11:59 AM
- 0:00 PM (midday, noon), 1:00 PM, ..., 11:59 PM
- In Japan 00:00 AM (==12:00 PM?) is midnight and 12:00 AM (==00:00 PM) is noon
- Splitting up 24 hours as $2 \cdot 12$ hours the confusing way
- 12:00 AM (midnight), 12:59 AM, 1:00 AM, ..., 11:59 AM
- 12:00 PM (midday, noon), 12:59 PM, 1:00 PM, ..., 11:59 PM
- $12 \equiv 0(\bmod 12)$, but $12 \not \equiv 0(\bmod 24)$, hence using 12 hours here is confusing

Outline

(1) The classic Caesar substitution cipher

- Caesar's system
- Alphabet encoding
- Modular arithmetic
- Mathematical formulation
- Caesar cryptanalysis
(2) General monoalphabetic systems
- Generating alphabets
- Some number theory
- Composition of ciphers
(3) Extension of the alphabet
- Classic systems
- The Hill cipher

Caesar mathematically

Caesar encryption and decryption

$$
\begin{align*}
& \mathcal{E}(p)=(p+3) \quad(\bmod 26) \tag{1}\\
& \mathcal{D}(c)=(c-3) \quad(\bmod 26) \tag{2}
\end{align*}
$$

- This works exactly the same with modern and legacy encoding
- Encryption and decryption are keyless
- Algorithm must be kept secret

Caesar variants with a key

Let k be a key, where $0 \leq k<26$. (What happens if $k=0$?)

Caesar encryption and decryption with key k

$$
\begin{array}{ll}
\mathcal{E}_{k}(p)=(p+k) & (\bmod 26) \\
\mathcal{D}_{k}(c)=(c-k) & (\bmod 26) \tag{4}
\end{array}
$$

- Even if the algorithm is known the key protects the encryption
- Since the key space is very small a brute force search is doable
- We call this a shift cipher or an additive cipher

Outline

(1) The classic Caesar substitution cipher

- Caesar's system
- Alphabet encoding
- Modular arithmetic
- Mathematical formulation
- Caesar cryptanalysis
(2) General monoalphabetic systems
- Generating alphabets
- Some number theory
- Composition of ciphers
(3) Extension of the alphabet
- Classic systems
- The Hill cipher

Caesar brute force decrypting "VLONY ZILWY"

Caesar brute force decrypting "VLONY ZILWY"

vlony zilwy

Caesar brute force decrypting "VLONY ZILWY"

vlony zilwy
uknmx yhkvx

Caesar brute force decrypting "VLONY ZILWY"

vlony zilwy
uknmx yhkvx
tjmlw xgjuw

Caesar brute force decrypting "VLONY ZILWY"

vlony zilwy
uknmx yhkvx
tjmlw xgjuw
silkv wfitv

Caesar brute force decrypting "VLONY ZILWY"

vlony zilwy
uknmx yhkvx
tjmlw xgjuw
silkv wfitv
rhkju vehsu

Caesar brute force decrypting "VLONY ZILWY"

vlony zilwy
uknmx yhkvx
tjmlw xgjuw
silkv wfitv
rhkju vehsu
qgjit udgrt

Caesar brute force decrypting "VLONY ZILWY"

vlony zilwy
uknmx yhkvx
tjmlw xgjuw
silkv wfitv
rhkju vehsu
qgjit udgrt
pfihs tcfqs

Caesar brute force decrypting "VLONY ZILWY"

vlony zilwy
uknmx yhkvx
tjmlw xgjuw
silkv wfitv
rhkju vehsu
qgjit udgrt
pfihs tcfqs
oehgr sbepr

Caesar brute force decrypting "VLONY ZILWY"

vlony zilwy
uknmx yhkvx
tjmlw xgjuw
silkv wfitv
rhkju vehsu
qgjit udgrt
pfihs tcfqs
oehgr sbepr
ndgfq radoq

Caesar brute force decrypting "VLONY ZILWY"

vlony zilwy
uknmx yhkvx
tjmlw xgjuw
silkv wfitv
rhkju vehsu
qgjit udgrt
pfihs tcfqs
oehgr sbepr
ndgfq radoq
mcfep qzenp
Ibedo pybmo
kaden oxaln
jzcbm nwzkm
iybal mvyjl
hxazk luxik
gwzyj ktwhj
fvyxi jsvgi
euxwh irufh

Caesar brute force decrypting "VLONY ZILWY"

vlony zilwy
uknmx yhkvx
tjmlw xgjuw
silkv wfitv
rhkju vehsu
qgjit udgrt
pfihs tcfqs
oehgr sbepr
ndgfq radoq

mcfep qzenp	dtwvg hqteg
lbedo pybmo	csvuf gpsdf
kaden oxaln	brute force
jzcbm nwzkm	aqtsd enqbd
iybal mvyjl	zpsrc dmpac
hxazk luxik	yorqb clozb
gwzyj ktwhj	xnqpa bknya
fvyxi jsvgi	wmpoz ajmxz
euxwh irufh	

Caesar brute force decrypting "VLONY ZILWY"

vlony zilwy
uknmx yhkvx
tjmlw xgjuw
silkv wfitv
rhkju vehsu
qgjit udgrt
pfihs tcfqs
oehgr sbepr
ndgfq radoq

mcfep qzenp	dtwvg hqteg
lbedo pybmo	csvuf gpsdf
kaden oxaln	brute force
jzcbm nwzkm	aqtsd enqbd
iybal mvyjl	zpsrc dmpac
hxazk luxik	yorqb clozb
gwzyj ktwhj	xnqpa bknya
fvyxi jsvgi	wmpoz ajmxz
euxwh irufh	

Outline

The classic Caesar substitution cipher

- Caesar's system
- Alphabet encoding
- Modular arithmetic
- Mathematical formulation
- Caesar cryptanalysis
(2) General monoalphabetic systems
- Generating alphabets
- Some number theory
- Composition of ciphers
(3) Extension of the alphabet
- Classic systems
- The Hill cipher

Outline

(1) The classic Caesar substitution cipher

- Caesar's system
- Alphabet encoding
- Modular arithmetic
- Mathematical formulation
- Caesar cryptanalysis
(2) General monoalphabetic systems
- Generating alphabets
- Some number theory
- Composition of ciphers
(3) Extension of the alphabet
- Classic systems
- The Hill cipher

Monoalphabetic substitution

Definition

A monoalphabetic substitution is the systematic replacement of letters by other letters in a one-to-one way.

Example monoalphabetic encryption and decryption

abcdefghijklmnopqrstuvwxyz
 DJEHKVNIOLARUQXPYWGTCSMFZB

ABCDEFGHIJKLMNOPQRSTUVWXYZ
kzuacxsdhbejwgipnlvtmfroqy

This example was generated using a Nomcom procedure with pool size 26 on input "12 ... 16" ${ }^{2}$

[^1]
Intermezzo: a real example (Spanish)

```
ADHRF SID QINVJX IH XDNAJIXJHAD
VFH YINEVJ YDZEVJHJ PFO J TTDPJX
J YE PDVEHJ JTTE DNAJ HFVWD DTTJ
DN YIO QFHEAJ O NEYLJAEVJ DNLDXF
WJVDXIHJ EYLXDNEFH QIDHJ
```

(1) 1-letter word a, y or sometimes o
(2) 2-letter word u. usually un
(3) 3-letter word ..e usually que
(9) 4-letter pattern ABBC usually alli or ella
(6) Doubled starting letter mostly I as in Ilegar, Ilevar, Ileno, Iluvia

Generating a monoalphabetic substitution from a keyword

> abcdefghijklmnopqrstuvwxyz KEYWORDABCFGHIJLMNPQSTUVXZ

Figure 5: Using "KEYWORD" as the keyword

$$
\begin{aligned}
& \text { abcdefghijklmnopqrstuvwxyz } \\
& \text { REPATDLSBCFGHIJKMNOQUVWXYZ }
\end{aligned}
$$

Figure 6: Using "REPEATED LETTERS" as the keyword/keyphrase

Generating a monoalphabetic substitution using decimation

abcdefghijklmnopqrstuvwxyz
EJOTYDINSXCHMRWBGLQVAFKPUZ

Figure 7: Encryption using a multiplicative cipher (legacy)

> abcdefghijklmnopqrstuvwxyz AFKPUZEJOTYDINSXCHMRWBGLQV

Figure 8: Encryption using a multiplicative cipher (modern)

- A multiplicative cipher is also called a decimation

Decryption of these multiplicative ciphers

```
ABCDEFGHIJKLMNOPQRSTUVWXYZ
upkfavqlgbwrmhcxsnidytojez
```

Figure 9: Decryption of the multiplicative cipher (legacy)

ABCDEFGHIJKLMNOPQRSTUVWXYZ
avqlgbwrmhcxsnidytojezupkf

Figure 10: Decryption of the multiplicative cipher (modern)

- The encryption factor was 5 . What is the decryption factor?

Mathematical description of decimation

Multiplicative encryption and decryption

$$
\begin{aligned}
\mathcal{E}_{e}(p)=e p & (\bmod 26) \\
\mathcal{D}_{d}(c)=d c & (\bmod 26)
\end{aligned}
$$

- There is now a difference between modern and legacy encoding
- Modern encoding works best for programming
- d is the multiplicative inverse ${ }^{3}$ of e

[^2]
Outline

(1) The classic Caesar substitution cipher

- Caesar's system
- Alphabet encoding
- Modular arithmetic
- Mathematical formulation
- Caesar cryptanalysis
(2) General monoalphabetic systems
- Generating alphabets
- Some number theory
- Composition of ciphers
(3) Extension of the alphabet
- Classic systems
- The Hill cipher

Euclid

Source: https://cdpn.io/dloader/fullpage/BwvLBB

Greatest common divisor

An example of Euclid's algorithm

We want to find the gcd (greatest common divisor) of 49 and 35 :

Euclid's reduction

$$
\begin{gathered}
49=1 \cdot 35+14 \Longrightarrow \operatorname{gcd}(49,35)=\operatorname{gcd}(35,14) \\
35=2 \cdot 14+7 \Longrightarrow \operatorname{gcd}(35,14)=\operatorname{gcd}(14,7) \\
14=2 \cdot 7+0 \Longrightarrow \operatorname{gcd}(14,7)=\operatorname{gcd}(7,0)=7
\end{gathered}
$$

Euclid's reversal

$$
\begin{aligned}
7=35 & -2 \cdot 14 \quad \wedge \quad 14=49-1 \cdot 35 \\
7 & =35-2 \cdot(49-1 \cdot 35) \\
& =-2 \cdot 49+3 \cdot 35
\end{aligned}
$$

Greatest common divisor

Euclid's algorithm

Theorem

For all $a, b \in \mathbb{Z}$ we can (effectively) find $p, q \in \mathbb{Z}$ such that

$$
\operatorname{gcd}(a, b)=p \cdot a+q \cdot b
$$

Finding p and q can be done using Euclid's algorithm and reversal.

Definition

a and b are called relatively prime iff $\operatorname{gcd}(a, b)=1$.

Theorem

If a and b are relatively prime (the extended) Euclid's algorithm calculates p and q such that

$$
p \cdot a+q \cdot b=1
$$

Application to decimation

In our example we had $e=5$ and we want to find its inverse d modulo 26 .
Calculation of inverse of 5 modulo 26

$$
26=5 \cdot 5+1 \Longrightarrow 1 \cdot 26+(-5) \cdot 5=1
$$

So the inverse of 5 modulo 26 is -5 (or 21).

- This explains why the decryption described earlier is indeed
just a decimation with factor 21
- A decimation's inverse is another decimation, just with a different multiplication factor.
- What happens if e and 26 are not relatively prime?

Outline

(1) The classic Caesar substitution cipher

- Caesar's system
- Alphabet encoding
- Modular arithmetic
- Mathematical formulation
- Caesar cryptanalysis
(2) General monoalphabetic systems
- Generating alphabets
- Some number theory
- Composition of ciphers
(3) Extension of the alphabet
- Classic systems
- The Hill cipher

Combining multiple ciphers

- Combining two shift ciphers with key k_{1} and k_{2}
- Result is shift cipher with key $k_{1}+k_{2}=k_{2}+k_{1}$
- Combining two decimations with key e_{1} and e_{2}
- Result is decimation with key $e_{2} e_{1}=e_{1} e_{2}$
- Combining a decimation with key e and a shift with key k
- First decimate, then shift gives the affine cipher
defined by $\mathcal{E}_{e, k}(p)=e p+k(\bmod 26)$
- First shift, then decimate gives the cipher
defined by $\mathcal{E}^{\prime}{ }_{e, k}(p)=e(p+k)(\bmod 26)$
or $\mathcal{E}^{\prime}{ }_{e, k}(p)=e p+e k=\mathcal{E}_{e, e k}(\bmod 26)$, just another affine cipher

Legacy and modern encoding for affine ciphers

- Suppose we have affine cipher $\mathcal{E}_{e, k}(p)=e p+k(\bmod 26)$
- Let d be the multiplicative inverse of $e(\bmod 26)$
- For a given character C and shift amount n
- Let $C+n$ be the result of a shift cipher encryption of character C with shift n
- Let $L(C)$ be the result of the affine encryption using $\mathcal{E}_{e, k}$ of C in legacy encoding
- Let $\mathcal{M}(C)$ be the result of the affine encryption using $\mathcal{E}_{e, k}$ of C in modern encoding
- Then we can deduce the following relationships
- $L(C)=M(C+1)-1$ for all C
- $L(C)=M(C)+(e-1)$ for all C
- $L(C)=M(C+(1-d))$ for all C

Outline

(1) The classic Caesar substitution cipher

- Caesar's system
- Alphabet encoding
- Modular arithmetic
- Mathematical formulation
- Caesar cryptanalysis
(2) General monoalphabetic systems
- Generating alphabets
- Some number theory
- Composition of ciphers
(3) Extension of the alphabet
- Classic systems
- The Hill cipher

Extending the "alphabet"

- Until now substitutions are monographic
- One letter of the alphabet is replaced with just one other letter
- What happens if we "extend the alphabet" (make it polygraphic)?
- For instance replace a combination of two letters of the alphabet by another combination of two letters (hence using digraphs)
- Effectively this extends our alphabet from 26 to $26 \cdot 26=676$ "letters" (or symbols, atoms, literals, ...)
- The number of possible (monoalphabetic) substitutions increases from $26!=403291461126605635584000000$
to $676!\approx 1.8837 \cdot 10^{1621}$

Outline

(1) The classic Caesar substitution cipher

- Caesar's system
- Alphabet encoding
- Modular arithmetic
- Mathematical formulation
- Caesar cryptanalysis
(2) General monoalphabetic systems
- Generating alphabets
- Some number theory
- Composition of ciphers
(3) Extension of the alphabet
- Classic systems
- The Hill cipher

Giovanni Battista della Porta's digraph encryption

Source: http://www.quadibloc.com/crypto/pp010302.htm (Can you spot anomalies?)

Giovanni Battista della Porta's digraph encryption (better variant)

An example digraph substitution

Abstract

Source: Slides Hans van der Meer
(Can you spot anomalies?)

Playfair square with keyword (Charles Wheatstone, 1854)

Figure 11: Playfair square (keyword STRANDBAL)

Playfair and Wheatstone

Lord Lyon Playfair

Charles Wheatstone

Source: https://en.wikipedia.org/wiki/Lyon_Playfair,_1st_Baron_Playfair

Playfair (row based) substitutions

Figure 12: Playfair encryption $\left(\mathrm{OC} \rightarrow \mathrm{QB} ; \mathrm{FI}_{\rightarrow \mathrm{GK} ; \mathrm{HX} \rightarrow \mathrm{PR})}\right.$

Playfair repeated letters and final single letter

- Treatment of pairs consisting of the same letter pattern "ss"
- Replace ss by sX s and recreate pairs, if s is not X
- Replace XX by XQX and recreate pairs
- Treatment of single final letter " f "
- Replace f by $f X$, if f is $\operatorname{not} X$
- Replace X by XQ
- An alternative would have been to use diagonals
- How?

Outline

(1) The classic Caesar substitution cipher

- Caesar's system
- Alphabet encoding
- Modular arithmetic
- Mathematical formulation
- Caesar cryptanalysis
(2) General monoalphabetic systems
- Generating alphabets
- Some number theory
- Composition of ciphers
(3) Extension of the alphabet
- Classic systems
- The Hill cipher

Lester S. Hill

Source: https://en.wikipedia.org/wiki/Lester_S._Hill

The (affine) Hill cipher

- Based on linear algebra
- Considers polygraphs as vectors
- An affine cipher built from
- An (invertible) matrix
- A translation vector
- All modulo the size of the base alphabet

$$
\left(\begin{array}{ll}
3 & 5 \\
6 & 1
\end{array}\right)\binom{10}{1}+\binom{-1}{1}=\binom{8}{10} \quad(\bmod 26)
$$

Decrypting the Hill cipher uses inverse matrix

- Encryption

$$
\mathcal{E}\left(p_{1}, p_{2}\right)=\left(\begin{array}{ll}
3 & 5 \\
6 & 1
\end{array}\right)\binom{p_{1}}{p_{2}}+\binom{-1}{1} \quad(\bmod 26)
$$

- Decryption

$$
\begin{aligned}
\mathcal{D}\left(c_{1}, c_{2}\right) & =\left(\begin{array}{cc}
-1 & 5 \\
6 & -3
\end{array}\right)\left[\binom{c_{1}}{c_{2}}+\binom{1}{-1}\right](\bmod 26) \\
& =\left(\begin{array}{cc}
-1 & 5 \\
6 & -3
\end{array}\right)\binom{c_{1}}{c_{2}}+\binom{-6}{9}(\bmod 26)
\end{aligned}
$$

[^0]: ${ }^{1}$ although, historically, Suetonius calls it backward

[^1]: ${ }^{2}$ see RFC 3797

[^2]: ${ }^{3}$ Does this always exist?

