Table of Contents

Classical Cryptography Monoalphabetic cryptanalysis

Karst Koymans

Informatics Institute University of Amsterdam (version 22.4, 2023/02/13 13:41:58 UTC)

Tuesday, February 14, 2023

Statistical Cryptanalysis Frequencies The index of coincidence: ϕ - and χ -tests

Example

Countermeasures against statistical cryptanalysis Homophones Polyalphabetic substitutions

Letter frequencies

- ► A simple method to attack monoalphabetic ciphers
 - Letter frequency analysis
- Some letters occur more (or less) than others
 - ► This is (somewhat) language dependent

Letter frequency diagram

English letter frequency

Source: https://en.wikipedia.org/wiki/Letter_frequency

William Friedman

William Friedman Source: https://en.wikipedia.org/wiki/William_F._Friedman

The index of coincidence (IoC)

- Introduced by William Friedman
- Probability that two letters chosen randomly from a text, based on an alphabet of *n* letters, are the same
- ▶ Given probabilities of occurrence p₀,..., p_{n-1} for the *n* letters
 ▶ loC = ∑_{i=0}ⁿ⁻¹ p_i²
- For text with a (uniformly) random frequency distribution this reduces theoretically (obviously) to $1/n \approx 0.038$ for n = 26)
- For an English text (with the English frequency distribution) this amounts to ≈ 0.066 , or $\approx 1/15$, found by doing experiments

The ϕ -test

- ▶ The IoC clearly distinguishes English text from random text
- Friedman observed that the IoC is invariant under monoalphabetic substitution
- Using the IoC to check for monoalphabeticity is called the ϕ -test
- For an unknown ciphertext of length M > 1 this test calculates

$$IoC = \sum_{t=A}^{Z} f_t(f_t - 1) / M(M - 1)$$

- Here f_t is the number of occurrences of the letter t
- For small texts the -1 is used to avoid counting identity as equality
 - Hence letters that occur only once don't contribute to the IoC

Breaking Caesar (by hand and automatically)

- Brute force 26 keys and see if you get plaintext (we did this before)
- Match (visually) the frequency distribution of the cryptogram to standard English by shifting the frequency graph
- To automate this the ϕ -test doesn't help, use the χ -test instead
 - The χ -test is also called cross-product sum
 - Consider two texts f and g of length M and N and calculate $\chi = \sum_{t=A}^{Z} f_t g_t / MN$
 - Find the highest χ value after comparing the shifted frequency diagram of the cryptogram with that of normal English text

Breaking general monoalphabetic substitutions

- First use the ϕ -test to check for monoalphabeticity
- Order the ciphertext letter distribution by frequency and try to match this with the standard English letter distribution or whatever language you may suspect is being used
- Look at digraph or even trigraph frequencies
- Look at beginning and ending of words (each has a different frequency distribution)
- Check vowels versus consonants and other letter patterns
- Look at keywords for alphabet construction
- Try to find cribs

Math of Secrets: 2.2 monoalphabet

QBVDLWXTEQGXOKTNGZJQGKXSTRQLYRXJYGJNALRXOTQLSLRKJQFJYGJNGXLKQLYUZGJSXQGXSLQXNQXLVXKOJDVJNNBTKJZBKPXULYUNZXLQXUJYQGXNTYQGXKXQJKXULKQJNQNLQBYLOLKKXSJYQGXNGLUXRSBNXOFULYDSXUGJNSXDNVTYRGXUGJNLEESXLYUESLYYXUQGXNSLTDGQXKBAVBKXJYYBRXYQNQGXKXZLNYBSLRPBAVLQXKJLSOBFNGLEEXYULSBYDXWXFSJQQSXZGJSXQGXFRLVXQBMXXKOTQKXVLJYXUQBZGJQXZLNG

Exercise 1

Exercise 1

- Count letters and make a table of frequencies
- Generate a frequency diagram, using a spreadsheet
- Calculate the Index of Coincidence
- ► Is it an additive cipher?
- Try to solve the cryptogram by assuming it is affine

Homophones

Math of Secrets: 2.2 homophones

- Homophones
 - A classic way to flatten frequency distributions
 - Introduce more than one ciphertext letter option for (some of) the plaintext letters
 - Especially for plaintext letters with high frequency
 - Needs a larger ciphertext alphabet
 - This is an example where the encryption function may be randomised (to a small extent)
 - ▶ The Zodiac Killer used homophones in both Z408 and Z340
 - But could have done a better job in randomisation

Exercise 2

Exercise 2

- Count symbols and make a table of frequencies
- Generate a frequency diagram, using a spreadsheet
- Calculate the Index of Coincidence for all symbols
- Calculate the Index of Coincidence for only the letters
- Is it a monoalphabetic cipher?
- Identify homophones and solve the cryptogram

Polyalphabetic substitutions

Definition (polygraphic)

A **polygraphic substitution** is the replacement of groups of letters by other groups of letters according to one big substitution table

Definition (polyliteral)

A **polyliteral substitution** is the replacement of single letters by groups of letters according to one big substitution table

Definition (polyalphabetic)

A **polyalphabetic substitution** is the replacement of single letters by other letters by using a varying ciphertext alphabet for encrypting each plaintext letter