Table of Contents
The classic Caesar substitution cipher
Caesar's system
Alphabet encoding
Modular arithmetic
Mathematical formulation
Caesar cryptanalysis
General monoalphabetic systems
Generating alphabets
Some number theory
Composition of ciphers
Extension of the alphabet
Classic systems
The Hill cipher

Caesar's cryptosystem

Interception and cryptanalysis

Who notices the peculiarities here?
Source: Slides Hans van der Meer

Caesar decryption

- Caesar decryption works by turning around the encryption process

$$
\begin{array}{|l}
\hline \text { DEFGHIJKLMNOPQRSTUVWXYZABC } \\
\text { abcdefghijklmnopqrstuvwxyz }
\end{array}
$$

Figure 3: Encryption turned around (backward rotation by 3 places)

ABCDEFGHIJKLMNOPQRSTUVWXYZ xyzabcdefghijklmnopqrstuvw

Figure 4: The same decryption reordered

Caesar encryption

- Caesar encryption is a forward ${ }^{1}$ rotation of the alphabet by 3 places

$$
\begin{array}{|l|}
\hline \text { abcdefghijklmnopqrstuvwxyz } \\
\text { DEFGHIJKLMNOPQRSTUVWXYZABC }
\end{array}
$$

Figure 1: Rotation by 3 positions

- An example encryption

> | an example encryption | |
| :--- | :--- |
| DQ | HADPSOH |

Figure 2: Encryption of "an example encryption"

[^0]Encoding (numbering) the alphabet

\section*{| | a | b | c | d | e | f | g | h | i | j | k | l | m | n | o | p | q | r | s | t | u | v | w | x | y | z |
| :---: |
| modern | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | | modern | 0 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 |
| :--- |
| 24 | 25 | |
| legacy | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 |
| 24 | 25 | 26 | |}

- Modern mathematics starts counting at 0
- The legacy variant, starting at 1 , is equivalent to ordering the alphabet as zabcdefghijklmnopqrstuvwxy
- This is because, when rotating the alphabet, we consider $26=0$

Clock arithmetic

$24=0$ (or maybe $12=0$)

- $\mathbb{Z}_{24}=\mathbb{Z} / 24 \mathbb{Z}=\{0,1,2, \ldots, 23\}$
- $23+1 \equiv 24 \equiv 0(\bmod 24)$

Definition $(n \in \mathbb{N}, n>1, a, b \in \mathbb{Z})$
$a \equiv b(\bmod n) \Longleftrightarrow n \mid(a-b) \Longleftrightarrow \exists k \in \mathbb{Z}(k \cdot n=(a-b))$
Theorem
". \equiv. $(\bmod n)$ " is an equivalence relation on \mathbb{Z}, in fact a congruence.
$\mathbb{Z}_{n}=\mathbb{Z} / n \mathbb{Z}=\{0,1, \ldots, n-1\}$ is the set of integers modulo n, using the standard representatives for the equivalence classes.

Corollary
Addition and multiplication can be performed $(\bmod n)$ as usual.

Clock arithmetic

Examples

$$
\begin{gathered}
22+5 \equiv 3 \quad(\bmod 24) \\
22 \cdot 5 \equiv 110 \equiv 14 \quad(\bmod 24) \\
-2 \cdot 5 \equiv-10 \equiv 14 \quad(\bmod 24) \\
2 \cdot 12 \equiv 24 \equiv 0 \quad(\bmod 24) \\
2 \not \equiv 0 \quad(\bmod 24) \\
12 \not \equiv 0 \quad(\bmod 24)
\end{gathered}
$$

\mathbb{Z}_{24} has divisors of zero or zero divisors,
which is considered an unwanted property in general.

Clock arithmetic

Convention

$(\bmod n)$ as a function

The function application $a(\bmod n)$ means the unique b such that $0 \leq b<n$ and $a \equiv b(\bmod n)$, as a relation.

- The use of $(\bmod n)$ both as a binary relation as well as a function can be confusing

$$
\begin{gathered}
(a(\bmod n) \equiv a)(\bmod n) \\
a(\bmod n)=(a(\bmod n))
\end{gathered}
$$

Who's afraid of zero?

or the AM/PM mess

- Splitting up 24 hours as $2 \cdot 12$ hours the sensible way
- 0:00 AM (midnight), 1:00 AM, ..., 11:59 AM
- 0:00 PM (midday, noon), 1:00 PM, ..., 11:59 PM
- In Japan 00:00 AM (==12:00 PM?) is midnight and 12:00 AM (==00:00 PM) is noon
- Splitting up 24 hours as $2 \cdot 12$ hours the confusing way
- 12:00 AM (midnight), 12:59 AM, 1:00 AM, ..., 11:59 AM
- 12:00 PM (midday, noon), 12:59 PM, 1:00 PM, ..., 11:59 PM
- $12 \equiv 0(\bmod 12)$, but $12 \not \equiv 0(\bmod 24)$, hence using 12 hours here is confusing

Caesar mathematically

Caesar encryption and decryption

$$
\begin{array}{ll}
\mathcal{E}(p)=(p+3) & (\bmod 26) \tag{1}\\
\mathcal{D}(c)=(c-3) & (\bmod 26)
\end{array}
$$

- This works exactly the same with modern and legacy encoding
- Encryption and decryption are keyless
- Algorithm must be kept secret

Caesar brute force decrypting "VLONY ZILWY"

vlony zilwy uknmx yhkvx	mcfep qzanp lbedo pybmo	dtwvg hqteg csvuf gpsdf
tjmlw xgjuw	kadcn oxaln	brute force brute force
silkv wfitv	jzcbm nwzkm	aqtsd enqbd
rhkju vehsu	iybal mvyjl	zpsrc dmpac
qgjit udgrt	hxazk luxik	yorqb clozb
pfihs tcfqs	gwzyj ktwhj	xnqpa bknya
oehgr sbepr	fvyxi jsvgi	wmpoz ajmxz
ndgfq radoq	euxwh irufh	

Caesar variants with a key

Let k be a key, where $0 \leq k<26$. (What happens if $k=0$?)
Caesar encryption and decryption with key k

$$
\begin{array}{ll}
\mathcal{E}_{k}(p)=(p+k) & (\bmod 26) \\
\mathcal{D}_{k}(c)=(c-k) & (\bmod 26) \tag{4}
\end{array}
$$

- Even if the algorithm is known the key protects the encryption
- Since the key space is very small a brute force search is doable
- We call this a shift cipher or an additive cipher

Monoalphabetic substitution

Definition
A monoalphabetic substitution is the systematic replacement
of letters by other letters in a one-to-one way.
Example monoalphabetic encryption and decryption

$\begin{array}{l}\text { abcdefghijklmnopqrstuvwxyz } \\ \text { DJEHKVNIOLARUQXPYWGTCSMFZB }\end{array}$	$\begin{array}{l}\text { ABCDEFGHIJKLMNOPQRSTUVWXYZ } \\ \text { kzuacxsdhbejwgipnlvtmfroqy }\end{array}$

This example was generated using a Nomcom procedure with pool size 26 on input " $12 \ldots 16$ " ${ }^{2}$
adhrf sid qinvjx ih xdnajixjhad vFH Yinevj ydzevjhi pro J tidpux J YE PDVEHJ JTTE DNAJ HFVWD DTTJ
DN YIO QFHEAJ O NEYLJAEVJ DNLDXF WJVDXIHJ EYLXDNEFH QIDHJ

1. 1-letter word \mathbf{a}, y or sometimes o
2. 2-letter word u. usually un
3. 3-letter word ..e usually que
4. 4-letter pattern $A B B C$ usually alli or ella
5. Doubled starting letter mostly I as in Ilegar, Ilevar, Ileno, Iluvia

Generating a monoalphabetic substitution using decimation abcdefghijklmnopqrstuvwxyz
EJOTYDINSXCHMRWBGLQVAFKPUZ

Figure 7: Encryption using a multiplicative cipher (legacy)

abcdefghijklmnopqrstuvwxyz
 AFKPUZEJOTYDINSXCHMRWBGLOV

Figure 8: Encryption using a multiplicative cipher (modern)

- A multiplicative cipher is also called a decimation

Generating a monoalphabetic substitution from a keyword

abcdefghijklmnopqrstuvwxyz
 KEYWORDABCFGHI J LMNPQSTUVXZ

Figure 5: Using "KEYWORD" as the keyword

abcdefghijklmnopqrstuvwxyz REPATDLSBCFGHI J KMNOQUVWXYZ

Figure 6: Using "REPEATED LETTERS" as the keyword/keyphrase

Figure 9: Decryption of the multiplicative cipher (legacy)

$$
\begin{aligned}
& \text { ABCDEFGHI JKLMNOPQRSTUVWXYZ } \\
& \text { avqlgbwrmhcxsnidytojezupkf }
\end{aligned}
$$

Figure 10: Decryption of the multiplicative cipher (modern)

- The encryption factor was 5 . What is the decryption factor?

Mathematical description of decimation

Multiplicative encryption and decryption

$$
\begin{align*}
\mathcal{E}_{e}(p) & =e p \quad(\bmod 26) \tag{5}\\
\mathcal{D}_{d}(c) & =d c \quad(\bmod 26)
\end{align*}
$$

(6)

- There is now a difference between modern and legacy encoding
- Modern encoding works best for programming
- d is the multiplicative inverse ${ }^{3}$ of e

${ }^{3}$ Does this always exist?

Greatest common divisor

An example of Euclid's algorithm
We want to find the gcd (greatest common divisor) of 49 and 35:
Euclid's reduction

$$
\begin{gathered}
49=1 \cdot 35+14 \Longrightarrow \operatorname{gcd}(49,35)=\operatorname{gcd}(35,14) \\
35=2 \cdot 14+7 \Longrightarrow \operatorname{gcd}(35,14)=\operatorname{gcd}(14,7) \\
14=2 \cdot 7+0 \Longrightarrow \operatorname{gcd}(14,7)=\operatorname{gcd}(7,0)=7
\end{gathered}
$$

Euclid's reversal

$$
\begin{aligned}
7=35 & -2 \cdot 14 \\
\wedge & \wedge 14=49-1 \cdot 35 \\
7 & =35-2 \cdot(49-1 \cdot 35) \\
& =-2 \cdot 49+3 \cdot 35
\end{aligned}
$$

Euclid

$$
\varepsilon V C L I D E \text { ©rargareaxc }
$$

Source: https://cdpn.io/dloader/fullpage/BwvLBB

Greatest common divisor

Euclid's algorithm
Theorem
For all $a, b \in \mathbb{Z}$ we can (effectively) find $p, q \in \mathbb{Z}$ such that

$$
\operatorname{gcd}(a, b)=p \cdot a+q \cdot b
$$

Finding p and q can be done using Euclid's algorithm and reversal.
Definition
a and b are called relatively prime iff $\operatorname{gcd}(a, b)=1$.
Theorem
If a and b are relatively prime (the extended) Euclid's algorithm calculates p and q such that

$$
p \cdot a+q \cdot b=1
$$

Application to decimation

In our example we had $e=5$ and we want to find its inverse d modulo 26 .
Calculation of inverse of 5 modulo 26

$$
26=5 \cdot 5+1 \Longrightarrow 1 \cdot 26+(-5) \cdot 5=1
$$

So the inverse of 5 modulo 26 is -5 (or 21).

- This explains why the decryption described earlier is indeed just a decimation with factor 21
- A decimation's inverse is another decimation, just with a different multiplication factor.

What happens if e and 26 are not relatively prime?

Legacy and modern encoding for affine ciphers

- Suppose we have affine cipher $\mathcal{E}_{e, k}(p)=e p+k(\bmod 26)$
- Let d be the multiplicative inverse of $e(\bmod 26)$
- For a given character C and shift amount n
- Let $C+n$ be the result of a shift cipher encryption of character C with shift n
- Let $L(C)$ be the result of the affine encryption using $\mathcal{E}_{e, k}$ of C in legacy encoding
- Let $M(C)$ be the result of the affine encryption using $\mathcal{E}_{e, k}$ of C in modern encoding
- Then we can deduce the following relationships
- $L(C)=M(C+1)-1$ for all C
- $L(C)=M(C)+(e-1)$ for all C
- $L(C)=M(C+(1-d))$ for all C

Combining multiple ciphers

- Combining two shift ciphers with key k_{1} and k_{2}
- Result is shift cipher with key $k_{1}+k_{2}=k_{2}+k_{1}$
- Combining two decimations with key e_{1} and e_{2}
- Result is decimation with key $e_{2} e_{1}=e_{1} e_{2}$
- Combining a decimation with key e and a shift with key k
- First decimate, then shift gives the affine cipher
defined by $\mathcal{E}_{e, k}(p)=e p+k(\bmod 26)$
- First shift, then decimate gives the cipher defined by $\mathcal{E}^{\prime}{ }_{e, k}(p)=e(p+k)(\bmod 26)$ or $\mathcal{E}^{\prime}{ }_{e, k}(p)=e p+e k=\mathcal{E}_{e, e k}(\bmod 26)$, just another affine cipher

Extending the "alphabet"

- Until now substitutions are monographic
- One letter of the alphabet is replaced with just one other letter
- What happens if we "extend the alphabet" (make it polygraphic)?
- For instance replace a combination of two letters of the alphabet by another combination of two letters (hence using digraphs)
- Effectively this extends our alphabet from 26 to $26 \cdot 26=676$ "letters" (or symbols, atoms, literals, ...)
- The number of possible (monoalphabetic) substitutions increases from $26!=403291461126605635584000000$
to $676!\approx 1.8837 \cdot 10^{1621}$

Giovanni Battista della Porta's digraph encryption (better variant)

Playfair square with keyword (Charles Wheatstone, 1854)

Figure 11: Playfair square (keyword STRANDBAL)

An example digraph substitution

Playfair and Wheatstone

Lord Lyon Playfair

Charles Wheatstone

Source: https://en.wikipedia.org/wiki/Lyon_Playfair, 1st Baron_Playfair

Figure 12: Playfair encryption $(\mathrm{OC} \rightarrow \mathrm{QB} ; \mathrm{FI} \rightarrow \mathrm{GK} ; \mathrm{HX} \rightarrow \mathrm{PR})$

- Treatment of pairs consisting of the same letter pattern "ss" - Replace ss by $s X s$ and recreate pairs, if s is not X
- Replace XX by XQX and recreate pairs
- Treatment of single final letter " f "
- Replace f by $f X$, if f is not X
- Replace X by XQ
- An alternative would have been to use diagonals
- How?

sowre ittps://en.wipeai.ong/wiki/Lester_s._Hill
- Based on linear algebra
- Considers polygraphs as vectors
- An affine cipher built from
- An (invertible) matrix
- A translation vector
- All modulo the size of the base alphabet

$$
\left(\begin{array}{ll}
3 & 5 \\
6 & 1
\end{array}\right)\binom{10}{1}+\binom{-1}{1}=\binom{8}{10} \quad(\bmod 26)
$$

Decrypting the Hill cipher uses inverse matrix

- Encryption

$$
\mathcal{E}\left(p_{1}, p_{2}\right)=\left(\begin{array}{ll}
3 & 5 \\
6 & 1
\end{array}\right)\binom{p_{1}}{p_{2}}+\binom{-1}{1} \quad(\bmod 26)
$$

- Decryption

$$
\begin{aligned}
\mathcal{D}\left(c_{1}, c_{2}\right) & =\left(\begin{array}{cc}
-1 & 5 \\
6 & -3
\end{array}\right)\left[\binom{c_{1}}{c_{2}}+\binom{1}{-1}\right] \quad(\bmod 26) \\
& =\left(\begin{array}{cc}
-1 & 5 \\
6 & -3
\end{array}\right)\binom{c_{1}}{c_{2}}+\binom{-6}{9}(\bmod 26)
\end{aligned}
$$

[^0]: 'although, historically, Suetonius calls it backward

