Classical Cryptography

Polyalphabetic substitution

Karst Koymans

Informatics Institute
University of Amsterdam
(version 22.5, 2023/02/14 13:15:31 UTC)
Tuesday, February 14, 2023
(1) Early polyalphabetic systems
(2) Later polyalphabetic systems
(3) Variations

- Porta
- Some more options
(4) A few related systems

Outline

(1) Early polyalphabetic systems

2 Later polyalphabetic systems

(3) Variations

- Porta
- Some more options
(4) A few related systems

Polyalphabetic ciphers

- Use more than one (cipher) alphabet
- Use a changing cipher alphabet (often for each plaintext letter)
- Leon Battista Alberti (1404-1472)
- Cipher disk
- Johannes Trithemius (1462-1516)
- Tabula recta
- Giovan Battista Bellaso (1505-ca 1575)
- Keyed polyalphabetic cipher
- Giambattista della Porta (ca 1535 - 1615)
- Porta reduced table

Alberti

Figure 1: Leon Battista Alberti (1404-1472)

Source: https://en.wikipedia.org/wiki/Leon_Battista_Alberti

Leon Battista Alberti (1404-1472)

- De Cifris (On Ciphers)
- Cipher disk
- Regularly change the cipher alphabet
- Communicate a change in ciphertext
- The outer ring is used for plaintext
- The inner ring is used for ciphertext

Trithemius

Figure 2: Johannes Trithemius (1462-1516)

Johannes Trithemius (1462-1516)

- Tabula recta
- "proper table"
- square table
- letter square
- tableau
- Progressive system
- The cipher alphabet changes each letter by taking the next line in the tabula recta

Tabula recta

A B C D E F G H I K L M N O P Q R S T UX Y Z W
$+==$
A B C D E F G H I K L M N O P O R S T U X Y Z W
B C D E F G H I K L M N O P Q R S T U X Y Z W A
C D E F G H I K L M N O P Q R S T U X Y Z W A B
D E F G H I K L M N O P Q R S T U X Y Z W A B C
E F GH I K L M N O P Q R S T U X Y Z W A B C D
F G H I K L M N O P Q R S T U X Y Z W A B C D E
G H I K L M N O P Q R S T U X Y Z W A B C D E F
H I K L M N O P Q R S T U X Y Z W A B C D E F G
I K L M N O P P Q R S T T U X Y Z W A B C D D E F
K L M N O P Q R S T U X Y Z W A B C D E F G H I
L M N O P Q R S T U X Y Z W A B C D E F G H I K
M N O P Q R S T U X Y Z W A B C D
N O P Q R S T U X Y Z W A B C D E F G H I K L M
O P Q R S T U X Y Z W A B C D E F G H I K L M N
P QRSTUXYZWABCDEFGHIKLMNO
Q R S T U X Y Z W A B C D E F G H I K L M N O P
R S T U X Y Z W A B C D E F G H I K L M N O P Q
S T U X Y Z W A B C D E F G H I K L M N O P Q R
T U X Y Z W A B C D E F G H I K L M N O P Q R S
U X Y Z W A B C D E F G H I K L M N O P Q R S T
X Y Z W A B C D E F G H I K L M N O P Q R S T U
Y Z W A B C D E F G H I K L M N O P Q R S T U X
ZW A B C D E F GHIK LMNOP QRSTUXY
W A B C D E F G H I K L M N O P Q R S T U X Y Z

Figure 3: Original tabula recta (no J, V ; W at end)

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z --> plaintext alphabet

Figure 4: Modern (progressive) tabula recta

Periodic progressive systems

- Normal progression $0,1,2, \ldots$ is very regular
- Its period is 26
- To make things less predictable you can vary the progression
- A step pattern like $1,3,2$ generates the irregular progression $0,1,4,6,7,10,12, \ldots$
- The progression index (PGI) is $1+3+2=6$ and the progression length (L) is 3
- Now the period turns out to be $\frac{\operatorname{Icm}(\mathrm{PGI}, 26)}{\mathrm{PGI}} \cdot \mathrm{L}=\frac{\operatorname{Icm}(6,26)}{6} \cdot 3=39$
- The general formula for an alphabet of size N is $\frac{\operatorname{lcm}(\mathrm{PGI}, \mathrm{N})}{\mathrm{PGI}} \cdot \mathrm{L}=\frac{\mathrm{N}}{\operatorname{gcd}(\mathrm{PGI}, \mathrm{N})} \cdot \mathrm{L}$

Kryha encryption device

- Mechanical device making irregular steps when pushing a lever
- With 17 -steps pattern $7,6,7,5,6,7,6,8,6,10,5,6,5,7,6,5,9$
- The period is an impressive $17 \cdot 26=442$

Kryha cryptanalysis

- Cryptanalysis by William Friedman and his team
- William Friedman, Solomon Kullback, Frank Rowlett and Abraham Sinkov
- The challenge given was a 1135 letter cryptogram
- The challenge was broken - without computers - in a mere 2 hours and 41 minutes

Giovan Battista Bellaso (1505 - ca 1575)

- "Forgotten by history"
- Introduced the keyed polyalphabet
- Repeating-key cipher
- Later named after Blaise de Vigenère
- Used reciprocal alphabets
- Makes encryption and decryption identical operations
- Later named after Francis Beaufort

Outline

(7) Early polyalphabetic systems

(2) Later polyalphabetic systems
(3) Variations

- Porta
- Some more options

Vigenère

Figure 5: Blaise de Vigenère (1523-1596)

Blaise de Vigenère (1523 - 1596)

- Used Bellaso’s ideas
- Combined the following ideas
- Tabula recta (now called Vigenère square)
- Repeating-key cipher
- Plaintext letters are along the top of the diagram
- Ciphertext letters inside the table
- Key letters are along the left side of the diagram
- A key letter equals the first letter of the cipher alphabet

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z $+==$ A \mid A B C D E F G H I J K L M N O P Q R S T U V W X Y Z B | B C D E F G H I J K L M N O P Q R S T U V W X Y Z A C \mid C D E F G H I J K L M N O P Q R S T U V W X Y Z A B D D D F G H I J K L M N O P Q R S T U V W X Y Z A B C E \mid E F G H I J K L M N O P Q R S T U V W X Y Z A B C D F| F G H I J K L M N O P Q R S T U V W X Y Z A B C D E G H I J K L M N O P Q R S T U V W X Y Z A B C D E F H \mid H I J K L M N O P Q R S T U V W X Y Z A B C D E F
$\mathrm{k} \quad \mathrm{I}$ I I J K L M N O P Q R S T U V W X Y Z A B C
e J J K L M N O P Q R S T U V W X Y Z A B C D E F G H I
y K \quad K L M N O P Q R S T U V W X Y Z A B C D E F G H I J
L L L M N O P Q R S T U V W X Y Z A B C D E F G H I J K
$1 \mathrm{M} \mid \mathrm{M} N \mathrm{O} P \mathrm{P}$ R S T U V W X Y Z A B C D E F G H I J K L

t O O O P Q R S T U V W X Y Z A B C D E F G H I J K L M N

T \quad T U V V W X Y Z A

V V W X Y Z A B C D E F G H I J K L M N O P Q R S T U
W
X
Y Z A B C D
Z A B C D E F G H I J K L M N O P Q R S T U V W X Y

Figure 6: Vigenère table (modern encoding)

Mathematical formulation of Vigenère's encryption

- Let $P=P_{0} P_{1} \ldots P_{n-1}$ be the plaintext
- Let $K=K_{0} K_{1} \ldots K_{p-1}$ be the key with period p
- Then the cryptogram $C=C_{0} C_{1} \ldots C_{n-1}$ is given by
- $C_{i}=\mathcal{E}_{i}\left(P_{i}\right)=P_{i}+K_{i(\bmod p)}(\bmod 26)$
- For decryption we conclude
- $P_{i}=\mathcal{D}_{i}\left(C_{i}\right)=C_{i}-K_{i(\bmod p)}(\bmod 26)$
- Exchanging encryption and decryption is called "Variant Vigenère"

More room for confusion

- Assume we want to keep the simple mathematical relationship between plaintext letter and cryptogram letter: $C=P+K$
- Also assume we want to use legacy encoding
- The only way this works is by using an alternative Vigenère
- This non-standard table is what is used in "The Mathematics of Secrets"
- In this case the key letters are not the first elements of the cipher alphabet

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z $+==$ A | B C D E F G H I J K L M N O P Q R S T U V W X Y Z A B \mid C D E F G H I J K L M N O P Q R S T U V W X Y Z A B C \mid D E F G H I J K L M N O P Q R S T U V W X Y Z A B C D \mid E F G H I J K L M N O P Q R S T U V W X Y Z A B C D E \mid F G H I J K L M N O P Q R S T U V W X Y Z A B C D E F \mid G H I J K L M N O P Q R S T U V W X Y Z A B C D E F G $\quad \mathrm{H}$ I J K L M N O P Q R S T U V W X Y Z A B C D E F G H I I J K L M N O P Q R S T U V W X Y Z A B C D E F G H
k I $\mid \mathrm{J}$ K L M N O P QR S T U V W X Y Z A B C D E F G H I
e J \mid K L M N O P Q R S T U V W X Y Z A B C D E F G H I J

L \mid M N O P Q R S T U V W X Y Z A B C D E F G H I J K L

t O P P Q R S T U V W X Y Z A B C D E F G H I J K L M N O

e $Q \mid R S T U V W X Y Z A B C D E F G H I J K L M N O P Q$
r \quad R \mid S T U V W X Y Z A B C D E F G H I J K L M N O P Q R
S T T U V W X Y Z A B C D E F G H I J K L M N O P Q R
| U V W X Y Z A B C D E F G H I J K L M N O P Q R S T
V W X Y Z A B C D E F G H I J K L M N O P Q R S T U
W X Y Z A B C D E F G H I J K L M N O P Q R S T U V
X Y Z A B C D E F G H I J K L M N O P Q R S T U V W
Y Z A B C D E F G H I J K L M N O P Q R S T U V W X
Z A B C D E F G H I J K L M N O P Q R S T U V W X Y
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Figure 7: Alternative Vigenère table (legacy encoding; used in book)

Beaufort

Figure 8: Francis Beaufort (1774-1857)

Francis Beaufort (1774-1857)

- Changes Vigenère square by starting with a mixed cipher alphabet
- Which is a Caesar $(k e y=1)$ shift of the atbash cipher
- Or if you want the atbash of a Caesar (key =-1) shift
- In modern encoding the Beaufort starting cipher alphabetcan also be described simply as a multiplicative cipher with factor - 1
- In legacy encoding the Beaufort starting cipher alphabet
- must be described by a more complicated affine cipher with
- factor -1
- additive 2

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
$+==$

B \mid B A Z Y X W V U T S R Q P O N M L K J I H G F E D C
C \quad C B A Z Y X W V U T S R Q P O N M L K J I H G F
D \mid D C B A Z Y X W V U T S R Q P O N M L K J I H G F E

F| F E D C B A Z Y X W V U T S R Q P O N M L K J I H G

H \mid H G F E D C B A Z Y X W V U T S R Q P O N M L K J I
I I H G F E D C B A Z Y X W V U T S R Q P O N M L K J
J J I H G F E D C B A Z Y X W V U T S R Q P O N M L K

L L K J I H G F E D C B A Z Y X W V U T S R Q P O N M

O O N M L K J I H G F E D C B A Z Y X W V U T S R Q P

Q Q P O N M L K J I H G F

S S R Q P O N M L K J I H G F E D C B A Z Y X W V U T
T| T S R Q P O N M L K J I H G F E D C B A Z Y X W V U
U U T S R Q P O N M L K J I H G F E D C B A Z Y X W V
V | V U T S R Q P O N M L K J I H G F E D C B A Z Y X W
W W V U T S R Q P O N M L K J I H G F E D C B A Z Y X
$X \mid X W V U T S R Q P O N M L K J I H G F E D C B A Z Y$
Y \mid Y X W V U T S R Q P O N M L K J I H G F E D C B A
$Z \quad Z \quad Y X W V U T S R Q P O N M L K J I H G F E D C B A$

Figure 9: Beaufort table

Mathematical formulation of Beaufort's encryption

- Let $P=P_{0} P_{1} \ldots P_{n-1}$ be the plaintext (in modern encoding)
- Let $K=K_{0} K_{1} \ldots K_{p-1}$ be the key with period \mathbf{p}
- Then the cryptogram $C=C_{0} C_{1} \ldots C_{n-1}$ is given by
- $C_{i}=\mathcal{E}_{i}\left(P_{i}\right)=-P_{i}+K_{i(\bmod p)}(\bmod 26)$
- For decryption we conclude
- $P_{i}=\mathcal{D}_{i}\left(C_{i}\right)=-C_{i}+K_{i(\bmod p)}(\bmod 26)$
- Now we clearly see the symmetric role of encryption and decryption
- $P_{i}+C_{i}=C_{i}+P_{i}=K_{i(\bmod p)}(\bmod 26)$

Outline

(1) Early polyalphabetic systems

(2) Later polyalphabetic systems
(3) Variations

- Porta
- Some more options

Outline

(1) Early polyalphabetic systems

(2) Later polyalphabetic systems
(3) Variations

- Porta
- Some more options
(4) A few related systems

della Porta

Figure 10: Giambattista della Porta (ca 1535 - 1615)

Giambattista della Porta (ca 1535 - 1615)

- Introduced the first digraph substitution
- De furtivis Literarum Notis (1563)
- His scientific work on cryptography
- Introduced another polyalphabetic cipher based on a reduced size table
- Porta's reduced table

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
$+==$

B $\left\lvert\, \begin{aligned} & \text { N O P R }\end{aligned}\right.$
C O P Q R S T U V W X Y Z N M A B C D E F G H I J K L
D \quad O P Q R S T U V W X Y Z N M A B C D E F G H I J K L
E P P R S T U V W X Y Z N O L M A B C

H | Q R S T U V W X Y Z N O P K L M A B C D E F G H I J
I R S T U V W X Y Z N O P Q J K L M A B C D E F G H I
J | R S T U V W X Y Z N O P Q J K L M A B C D E F G H I

L \mid S T U V W X Y Z N O P Q R I J K L M A B C D E F G H

N \mid T U V W X Y Z N O P Q R S H I J K L M A B C D E F G
O U V W X Y Z N O P Q R S T G H I J K L M A B C D E F
P | U V W X Y Z N O P Q R S T G H I J K L M A B C D E F
Q | V W X Y Z N O P Q R S T U F G H I J K L M A B C D E
R | V W X Y Z N O P Q R S T U F G H I J K L M A B C D E
S | W X Y Z N O P Q R S T U V E F G H I J J K L M A B
T $\left\lvert\, \begin{aligned} & \text { W X Y Z N O P Q R S T U V E F G H I J K L M A B C }\end{aligned}\right.$
U| X Y Z N O P Q R S T U V W D E F G H I J K L M A B C
V | X Y Z N O P Q R S T U V W D E F G H I J K L M A B C
W| Y Z N O P Q R S T U V W X C D E F G H I J K L M A B
X | Y Z N O P QR S T U V W X C D E F G H I J K L M A B

$Z \quad Z \quad N O P Q R S T U V W X Y B C D E F B H I J K L M A$

Figure 11: Full Porta table

Reduced Porta table

Figure 12: Reduced Porta table

Outline

(7) Early polyalphabetic systems

(2) Later polyalphabetic systems
(3) Variations

- Porta
- Some more options
A \mid A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
B | B C D E F G H I J K L M N O P Q R S T U V W X Y Z A

D D D F G H I J K L M N O P Q R S T U V W X Y Z A B C
E \quad E \quad F \quad G H I
F \quad F G H I J K L M N O P Q R S T U V W X Y Z A B C D E

H \mid H I J K L M N O P Q R S T U V W X Y Z A B C D E F G
I J K L M N O P Q R S T U V W X
| J K L M N O P Q R S T U V W X Y Z A B C D E F G H I
| K L M N O P Q R S T U V W X Y Z A B C D E F G H I J
L L L M N O P Q R S T U V W X Y Z A B C D E F G H I J K

N $\left\lvert\, \begin{array}{ll}\text { N O P } & \text { R S T U V W X Y Z A B C D E F G H I J K L M }\end{array}\right.$
O

Q | Q R S T U V W X Y Z A B C D E F G H I J K L M N O P
R | R S T U V W X Y Z A B C D E F G H I J K L M N O P Q

T | T U V W X Y Z A B C D E F G H I J K L M N O P Q R
U U V W X Y Z A B C D
V | V W X Y Z A B C D E F G H I J K L M N O P Q R S T U

X | \quad X Y Z A B C D E F G H I J K L M N O P Q R

Figure 13: "Plain mixed up"-table

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
$+==$

B I I P H E R M X D U A B F G J K L N O Q S T V W Y Z C
C P H E R M X D U A B F G J K L N O Q S T V W Y Z C I

F|RMX D U A B F G J K L N O Q S T V W Y Z C I P H E

H \mid X D U A B F G J K L N O Q S T V W Y Z C I P H E R M
| D U A B F G J K L N O Q S T V W Y Z C I P H E R M X U A B F G J K L N O Q S T V W Y Z C I P H E R M X D A B F G J K L N O Q S T V W Y Z C I P H E R M X D U B F G J K L N O Q S T V W Y Z C I P H E R M X D U A F G J K L N O Q S T V W Y Z C I P H E R M X D U A B G J K L N O Q S TV W Y Z C I P H E R M X D U A B F J K L N O Q S T V W Y Z C I P H E R M X D U A B F G K L N O Q S T V W Y Z C I P H E R M X D U A B F G J L N O Q S T V W Y Z C I P H E R M X D U A B F G J K N O Q S TVWYZ C I P H E R M X D U A B F G J K L O Q S TVWY Z C I P H E R M X D U A B F G J K L N Q S TVW Y Z C I P H E R M X D U A B F G J K L N O S T V W Y Z C I P H E R M X D U A B F G J K L N O Q T V W Y Z C I P H E R M X D U A B F G J K L N O Q S V W Y Z C I P H E R M X D U A B F G J K L N O Q S T W Y Z C I P H E R M X D U A B F G J K L N O Q S TV Y Z C I P H E R M X D U A B F G J K L N O Q S T V W Z C I P H E R M X D U A B F G J K L N O Q S T V W Y

Figure 14: "Cipher mixed up"-table

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
$+==$
C \mid C I P H E R M X D U A B F G J K L N O Q S T V W Y Z
I I I P H E R M X D U A B F G J K L N O Q S T V W Y Z C
P P H E R M X D U A B F G J K L N O Q S T V W Y Z C I
H \mid H E R M X D U A B F G J K L N O Q S T V W Y Z C I P
E $\left\lvert\, \begin{array}{lllllllllllllllllllllll} & R & M & X & D & U & A & B & F & G & J & K & N & O & Q & S & T & W & Y & Z & C & I & P\end{array}\right.$
R \quad R M X D U A B F G J K L N O Q S T V W Y Z C I P H E
M | M X D U A B F G J K L N O Q S T V W Y Z C I P H E R
X \mid X D U A B F G J K L N O Q S T V W Y Z C I P H E R M
D D D U A B F G J K L N O Q S T V W Y Z C I P H E R M X
U U A B F G J K L N O Q S T V W Y Z C I P H E R M X D
A A B F G J K L N O Q S T V W Y Z C I P H E R M X D U
B $\mathrm{B}_{\mathrm{F}} \mathrm{F}$ J K L N O Q S TV W Y Z C I P H E R M X D U A
F F G J K L N O Q S T V W Y Z C I P H E R M X D U A B
G \mid G J K L N O Q S TV W Y Z C I P HERMX D U A B F
J J J L N O Q S T V W Y Z C I P H E R M X D U A B F G
K \mid K L N O Q S TV W Y Z C I P H E R M X D U A B F G J
L L L N O Q S T V W Y Z C I P H E R M X D U A B F G J K
N \mid N O Q S TVWYZ C I P H E R M X D U A B F G J K L
O O Q S TV W Y Z C I P H E R M X D U A B F G J K L N

S S T V W Y Z C I P H E R M X D U A B F G J K L N O Q
T| TVW Y Z C I P H E R M X D U A B F G J K L N O Q S
V | V W Y Z C I P H E R M X D U A B F G J K L N O Q S T
W| W Y Z C I P H E R M X D U A B F G J K L N O Q S T V
Y Y Z C I P H E R M X D U A B F G J K L N O Q S T V W
$Z \mid Z C I P H E R M X D U A B F G J K L N O Q S T V W Y$

Figure 15: "Cipher and key mixed up"-table
A \mid A B F G J K L N O Q S T V W Y Z C I
B | B F G J K L N O Q S TV W Y Z C I P H E R M X D U A

D \mid D U A B F G J K L N O Q S T V W Y Z C I P H E R M X
E $\left\lvert\, \begin{array}{llllllllllllllllllllll} & R & M & X & D & U & A & B & F & G & J & K & L & N & O & Q & S & T & V & W & Y & Z\end{array} C \begin{aligned} & \text { C }\end{aligned}\right.$
F| F G J K L N O Q S T V W Y Z C I P H E R M X D U A B
G G J K L N O Q S T V W Y Z C I I P H E R
H \mid H E R M X D U A B F G J K L N O Q S T V W Y Z C I P
| I P H E R M X D U A B F G J K L N O Q S T V W Y Z C
J K L N O Q S TV W Y Z C I P H E R M X D U A B F G
K L N O Q S T V W Y Z C I P H E R M X D U A B F G J
L N O Q S T V W Y Z C I P H E R M X D U A B F G J K
M X D U A B F G J K L N O Q S T V W Y Z C I P H E R
N O Q S TV W Y Z C I P H E R M X D U A B F G J K L
O Q S TV W Y Z C I P H E R M X D U A B F G J K L N
P H E R M X D U A B F G J K L N O Q S T V W Y Z C I

R M X D U A B F G J K L N O Q S T V W Y Z C I P H E
S T V W Y Z C I P H E R M X D U A B F G J K L N O Q
T V W Y Z C I P H E R M X D U A B F G J K L N O Q S
U A B F G J K L N O Q S T V W Y Z C I P H E R M X D
V W Y Z C I P H E R M X D U A B F G J K L N O Q S T
W Y Z C I P H E R M X D U A B F G J K L N O Q S T V
X D U A B F G J K L N O Q S TV W Y Z C I P H E R M
Y Z C I P H E R M X D U A B F G J K L N O Q S T V W
Z C I P HERMXD U A B F G J K L N O Q S T V W Y

Figure 16: "Cipher and key mixed up (sorted)"-table

P L A I N M X E D U B C F G H J K O Q R S T V W Y Z
$+===$
K \mid C I P H E R M X D U A B F G J K L N O Q S T V W Y Z
E I I P H E R M X D U A B F G J K L N O Q S T V W Y Z C
Y | P H E R M X D U A B F G J K L N O Q S T V W Y Z C I
M \mid H E R M X D U A B F G J K L N O Q S T V W Y Z C I P

X \mid R M X D U A B F G J K L N O Q S T V W Y Z C I P H E
D | M X D U A B F G J K L N O Q S T V W Y Z C I P H E R
U \mid X D U A B F G J K L N O Q S T V W Y Z C I P H E R M
P D U A B F G J K L N O Q S T V W Y Z C I P H E R M X
A U A B F G J K L N O Q S TV W Y Z C I P H E R M X D
B A B F G J K L N O Q S T V W Y Z C I P H E R M X D U
C $\mathrm{B}_{\mathrm{F}} \mathrm{F}$ J K L N O Q S TV W Y Z C I P H E R M X D U A
F F G J K L N O Q S T V W Y Z C I P H E R M X D U A B

H J K L N O Q S T V W Y Z C I P H E R M X D U A B F G K L N O Q S TV W Y Z C I P H E R M X D U A B F G J L N O Q S TV W Y Z C I P H E R M X D U A B F G J K N O Q S T V W Y Z C I P H E R M X D U A B F G J K L O Q S TVWY Z C I P H E R M X D U A B F G J K L N Q S TV W Y Z C I P H E R M X D U A B F G J K L N O S T V W Y Z C I P H E R M X D U A B F G J K L N O Q TVW Y Z C I P H E R M X D U A B F G J K L N O Q S V W Y Z C I P H E R M X D U A B F G J K L N O Q S T W Y Z C I P H E R M X D U A B F G J K L N O Q S T V Y Z C I P H E R M X D U A B F G J K L N O Q S T V W
Z C I P H E R M X D U A B F G J K L N O Q S T V W Y

Figure 17: "Plain, cipher and key mixed up"-table

P L A I N M X E D U B C F G H J K O Q R S T V W Y Z
$+===$
A $\left\lvert\, \begin{array}{llllllllllllllllllllllll} & U & A & B & F & G & J & K & L & N & O & Q & S & T & V & W & Y & Z & C & I & P & H & E & R\end{array}\right.$ M X D
B $\left.\left\lvert\, \begin{array}{llllllllllllllllllllllll}\text { A } & B & F & G & J & K & L & N & O & Q & S & T & V & W & Y & Z & C & I & P & H & E & R & M & X\end{array}\right.\right] \quad U$

H	J	K	L	N	O	Q	S	T	V	W	Y	Z	C	I	P	H	E	R	M	X	D	U	A	B

| $\left.\begin{array}{lllllllllllllllllllllllll} & E & R & M & X & D & U & A & B & F & G & J & K & L & N & O & Q & S & T & V & W & Y & Z & C & I\end{array}\right]$

M $\left\lvert\, \begin{array}{llllllllllllllllllllllll} & H & E & R & M & X & D & U & A & B & F & G & J & K & L & N & O & Q & S & T & V & W & Y & Z\end{array} C\right.$

| N | N | O | Q | S | T | V | W | Y | Z | C | I | P | H | E | R | M | X | D | U | A | B | F | G | J |
| :--- | $\mathrm{~K} \quad \mathrm{~L}$

O $\quad \mathrm{O} \quad \mathrm{Q} \quad \mathrm{S}$ T T

R	S	T	V	W	Y	Z	C	I	P	H	E	R	M	X	D	U	A	B	F	G	J	K	L	N	O

S $\left\lvert\, \begin{array}{lllllllllllllllllllllllllll} & T & V & W & Y & Z & C & I & P & H & E & R & M & X & D & U & A & B & F & G & J & K & L & N & O & Q & S\end{array}\right.$
$\left.\begin{array}{l|llllllllllllllllllllllll}T & V & W & Y & Z & C & I & P & H & E & R & M & X & D & U & A & B & F & G & J & K & L & N & O & Q\end{array}\right)$
 $\begin{array}{llllllllllllllllllllllll}W & Y & Z & C & I & P & H & E & R & M & X & D & U & A & B & F & G & J & K & L & N & O & Q & S\end{array}$
 $\begin{array}{llllllllllllllllllllllllll}\text { R } & \text { M } & X & D & U & A & B & F & G & J & K & L & N & O & Q & S & T & V & W & Y & Z & C & I & P & H & E\end{array}$ $\begin{array}{llllllllllllllllllllll}P & H & E & R & M & X & D & U & A & B & F & G & J & K & L & N & O & Q & S & T & V & W\end{array}$

Figure 18: "Plain, cipher and key mixed up (sorted)"-table

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z $+===$

D $\mathrm{D}_{\mathrm{L}} \mathrm{L}$ N J G O Q S U T V X B A W M Y Z C I K P H F E R

F J J W S Q Y Z C K I P G N L H F E R M X T D U O A B
G $\left\lvert\, \begin{array}{llllllllllllllllllllll} & W & Y & S & Z & C & I & L & P & H & J & O & N & E & G & R & M & X & D & V & U & A\end{array} Q^{\prime} \quad B \quad F\right.$

I | M J K F B L N O X Q S R U D T E V W Y Z G C I A P H
J N Z C W V I P H O E R L S Q M K X D U A Y B F T G J

L O C I Y W P H E Q R M N T S X L D U A B Z F G V J K

N \mid Q I P Z Y H E R S M X O V T D N U A B F C G J W K L
O S P H C Z E R M T X D Q W V U O A B F G I J K Y L N
P A O Q L K S TVBWY U G F Z D C I P H N E R J M X
Q | T H E I C R M X V D U S Y W A Q B F G J P K L Z N O
R | V E R P I M X D W U A T Z Y B S F G J K H L N C O Q

T | Y M X E H D U A Z B F W I C G V J K L N R O Q P S T
U U N O K J Q S T A V W D F B Y X Z C I P L H E G R M
Z X D R E U A B C F G Y P I J W K L N O M Q S H T V
C D U M R A B F I G J Z H P K Y L N O Q X S T E V W
X K L G F N O Q D S TMA U VR W Y Z C J I P B H E
E F G A U J K L R N O H X M Q P S T V W B Y Z D C I
| I U A X M B F GP J K C E H L Z N O Q S D T VR W Y

Figure 19: "Plain, cipher and key mixed up (all sorted)"-table

S A M E I X D B C F G H J K L N O P Q R T U V W Y Z
$+===$

A $\left\lvert\, \begin{array}{lllllllllllllllllllllll}\text { A } & S & Z & Y & W & V & U & T & R & Q & P & O & N & L & K & J & H & G & F & C & B & D & X \\ I & E & M\end{array}\right.$

| X | X | I | E | M | A | S | Z | Y | W | V | U | T | R | Q | P | O | N | L | K | J | H | G | F | C | B | D |
| :--- |

H $\left\lvert\, \begin{array}{llllllllllllllllllllllll}\text { H } & G & F & C & B & D & X & I & E & M & A & S & Z & Y & W & V & U & T & R & P & O & N & L & K\end{array}\right.$

$\left.\begin{array}{llllllllllllllllllllll}P & O & N & L & K & J & H & G & F & C & B & D & X & I & E & M & A & S & Z & Y & W & V\end{array}\right]$

T $\left\lvert\, \begin{array}{llllllllllllllllllllllllll} & T & R & Q & P & O & N & L & K & J & H & G & F & C & B & D & X & I & E & M & A & S & Z & Y & W & V\end{array}\right.$

W	W	V	U	R	Q	P	O	N	L	K	J	H	G	F	C	B	D	X	I	E	M	A	S
Z	Y																						

$\begin{array}{llllllllllllllllllll}Z & Y & W & V & U & R & Q & P & O & N & L & K & J & H & G & F & C & B & D & X \\ I & E & M & A & S\end{array}$

Figure 20: "Same mixed (Beaufort-style)" table

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z $+===$

B \mid D S Z A I Y W V E U T R X Q P O N L B K J H G M F C
C \quad B A S M X Z Y W I V U T D R \quad Q P O N C L K

F C M A E D S Z Y X W V U B T R Q P O F N L K J I H G

H \mid G I E X C M A S B Z Y W F V U T R Q H P O N L D K J
I | E W V Y A U T R S Q P O M N L K J H I G F C B Z D X
J | H X I D F E M A C S Z Y G W V U T R J Q P O N B L K
K J J D X B G I E M F A S Z H Y W V U T K R Q P O C N L
L \mid K B D C H X I E G M A S J Z Y W V U L T R Q P F O N

O N F C G K B D X J I E M L A S Z Y W O V U T R H Q P
P O G F H L C B D K X I E N M A S Z Y P W V U T J R Q
Q | P H G J N F C B L D X I O E M A S Z Q Y W V U K T R
R | Q J H K O G F C N B D X P I E M A S R Z Y W V L U T
S Z R Q T W P O N V L K J Y H G F C B S D X I E U M A
T| R K J L P H G F O C B D Q X I E M A T S Z Y W N V U
U T L K N Q J H G P F C B R D X I E M U A S Z Y O W V

W|VON P T L K J R H G F U C B D X I W E M A S Q Z Y
X | I Y W Z M V U T A R Q P E O N L K J X H G F C S B D

$Z \quad Y \quad Q P R V O N L U K J H W G C B D Z X I E M T A S$

Figure 21: "Same mixed (Beaufort style and sorted)"-table

Outline

(7) Early polyalphabetic systems

(2) Later polyalphabetic systems
(3) Variations

- Porta
- Some more options

4) A few related systems

Multiplex systems (1): Alphabet strips

- Choose a set of alphabet strips from a given collection
- Each strip contains (two copies of) a permutation of the alphabet
- Put the plaintext inside one of the columns
- Read off the ciphertext from any other column
- Each of the other 25 columns is called a generatrix

Alphabet strip example

Figure 22: Encryption of vyand nadert water into dotjw xtwsi vkrzix
Source: Syllabus Hans van der Meer

Alphabet strips (M-138-A)

Figure 23: William Friedman's alphabet strips device

Jefferson and Bazeries

Thomas Jefferson

Étienne Bazeries
https://en.wikipedia.org/wiki/Thomas_Jefferson
http://www.bibmath.net/crypto/complements/images/bazeries.jpg

Multiplex systems (2): Jefferson disk (M-94)

- This is based on the same idea as the alphabet strips
- The alphabets are circumscribed on wheels mounted on a cylinder
- It is also called a Bazeries cylinder

Source: Syllabus Hans van der Meer

Rotor based systems

- Similar to a progressive system based on a mixed cipher alphabet
- The difference is that it also has a "regressive" component
- In fact the next cipher alphabet is a conjugation
of the current cipher alphabet with a "Caesar 1" cipher
- Let R be the (arbitrary) rotor permutation and C an additive permutation with addition 1
- Then after k rotation steps the permutation is given by

$$
R_{k}=C^{-k} \circ R \circ C^{k}
$$

