Table of Contents

Classical Cryptography

Polyalphabetic cryptanalysis

Karst Koymans

Informatics Institute

 University of Amsterdam(version 22.3, 2023/02/02 11:37:56 UTC)
Friday, February 17, 2023

The loC of a polyalphabetic cipher (1)

- We assume that we work with a repeating-key cipher
- Assume no letters repeat in the key itself
- Assume the text length is n and the period is p
- For simplicity suppose p divides n, so $n=p \cdot q$ and $q=\frac{n}{p}$
- Let κ_{r} be the loC of random text (≈ 0.038)
- Let κ_{e} be the loC of English plaintext (≈ 0.066)
- If we split up the cryptogram in p columns
- then each column of size q is monoalphabetic in itself
- and letters in different columns seem unrelated

Effect on the Index of Coincidence

Determination of the period

Composition of polyalphabetic ciphers

The loC of a polyalphabetic cipher (2)

So if we pick two different letters from the cryptogram we expect an index of coincidence of (approximately)

$$
\mathrm{IoC} \approx \frac{n(n-q) \kappa_{r}+n(q-1) \kappa_{e}}{n(n-1)}
$$

or

$$
\mathrm{IoC} \approx \frac{n-q}{n-1} \kappa_{r}+\frac{q-1}{n-1} \kappa_{e}
$$

- For $p=n, q=1$ this reduces to κ_{r} (random)
- For $p=1, q=n$ this reduces to κ_{e} (monoalphabetic)

Solving for p and writing κ_{i} for the loC we get from the previous estimation

$$
p \approx \frac{\kappa_{e}-\kappa_{r}}{\kappa_{i}-\kappa_{r}+\frac{\kappa_{e}-\kappa_{i}}{n}}
$$

So if n is large enough this reduces to

$$
p \approx \frac{\kappa_{e}-\kappa_{r}}{\kappa_{i}-\kappa_{r}} \approx \frac{0.028}{\kappa_{i}-0.038}
$$

Babbage

Figure 1: Charles Babbage (1791-1871)
Source: https://en.wikipedia.org/wiki/Charles_Babbage

- The Kasiski test
- Look for repetitions of groups of letters in the cryptogram
- See how far they are apart and collect these distances
- Probably the repetitions come from a repetition in the plaintext
- In that case the distance d is a multiple of the period p
- A probable p follows from the consideration of all those d's
- Charles Babbage (1791-1871) probably invented this method years before Friedrich Kasiski (1805-1881) did

Kasiski method

Until 1863 Vigenère is "le chiffre indéchiffrable"
Then major Friedrich Kasiski publishes
"Die Geheimschriften und die Dechiffrier-kunst" a method to determine the period
uses repetitions in phase with this period

William F. Friedman, Riverbank Publication nr 22, 1920 The Index of Coincidence and its Application in Cryptography

Repetitions

```
pt: EENCURSUSVANHETMATHEMATISCHCENTRUM
    k: STOEIPOESSTOEIPOESSTOEIPOESSTOEIPO
ct: WXBGCGGYKNTBLMIAELZXAEBXGGZUXBXZJA
pt: EENCURSUSVANHETMATHEMATISCHCENTRUM
    k: STOEIPOESSTOEIPOESSTOEIPOESSTOEIPO fake
ct: WXBGCGGYKNTBLMIAELZXAEBXGGZUXBXZJA
pt: EENCURSUSVANHETMATHEMATISCHCENTRUM
    k: STOEIPOESSTOEIPOESSTOEIPOESSTOEIPO
ct: WXBGCGGYKNTBLMIAELZXAEBXGGZUXBXZJA

\section*{Kulp message}

Ge Jeasgdxv,
Zij gl mw, laam, xzy zmlwhfzek ejlvdxw kwke tx lbr atgh lbmx
aanu bai Vsmukkss pwn vlwk agh
gnumk wdlnzweg jnbxvv oaeg enwb
zwmgy mo mlw wnbx mw al pnfdcfpkh
wzkex hssf xkiyahul. Mk num yexdm

wbxy sbc hv wyx Phwkgnamcuk?
1839 from Kulp, Lewiston, Pennsylvania, USA to Edgar Allen Poe, ed. Alexander's Weekly Messenger

\section*{Kasiski analysis}

\section*{zij gl mw, laam, xzy zmlwhfzek ejlvdxw kwke tx} l.br atgh lbmx aanu bai vsmukkss pwn vlwk agh gnumk wdlnzweg jnbxvv oaeg enwb zwmgy mo mlw wnbx mw al pnfdcfpkh wzkex hssf xkiyahul mk num yexdm wbxy sbc hv wyx phwkgnamcuk


\section*{3 letters = THE ?}
zij gl mw, laam, xzy zmlwhfzek ejlvdxw kwke tx l.br atgh l.bmx aanu bai vsmukkss pwn vlwk agh gnumk wdlnzweg jnbxvv oaeg enwb zwmgy mo mlw wnbx mw al pnfdcfpkh wzkex hssf xkiyahul mk num yexdm wbxy sbc hv wyx phwkgnamcuk
\(X Y Z=\) the \(\rightarrow\) key letters

\section*{Position on period 12}


\section*{Kulp message decoded}

Mr Alexander,
how ys it, that, the messenger
arrives here at the sace time
with the Saturgay cou rier and
other satuzdao paters when
avco rdidg to the cate it is
publishrd three days previous. Is
the fault witg you or tge


Possmastyrs?

Note the many mistakes (introduced by the editor?)
- The \(\kappa\) test
- Friedman's original application of the theory of coincidence
- This time we look at two texts
- that we compare character by character
- We expect coincidences \(\kappa_{r}\) and \(\kappa_{e}\) for respectively two random and two English texts
- The trick is to compare some cryptogram with a displaced (shifted, slid) copy of itself
- If the displacement is a multiple of the period coincidences rise

\section*{Superimposition}
- Knowing the period we can superimpose (Dutch: "in diepte leggen") the cryptogram
- Each column is monoalphabetic
- This makes cryptanalysis easy if the cipher is based for instance on a Vigenère with plain alphabet
- Each monoalphabet is then additive and we need only one letter for each column to determine it
- Simple letter frequency counts usually suffice

\section*{Repeating-key framework for compositions}
- Repeating-key polyalphabetic ciphers
- Each monoalphabetic cipher is either
- Additive
- So this is a standard Vigenère
- Affine
- The first cipher alphabet is mixed up by a decimation

Keywords of the same length
- Composition gives a similar cipher
- The combined keyword length stays the same
- Composition of additives stays additive
- The keyword is the addition of keywords
- Which makes it somewhat harder-to-guess
- Composition of affines stays affine
- The keyword is a linear combination of keywords
- Also the decimation changes
- Can you find out the exact formulas?

\section*{Keywords of different lengths}
- Let the length of the keywords K and L be \(a\) and \(b\) respectively
- Let \(\operatorname{Icm}(a, b)\) be the least common multiple of \(a\) and \(b\)
- Let \(a^{\prime}=\operatorname{Icm}(a, b) / b\) and \(b^{\prime}=\operatorname{Icm}(a, b) / a\)
- Reduce this situation to keywords of the same length
- Consider keywords KK...K ( \(b^{\prime}\) times) and LL...L ( \(a^{\prime}\) times)
- This results in two keywords of equal length \(\operatorname{lcm}(a, b)\)```

