Table of Contents

Classical Cryptography

Polyalphabetic substitution

Karst Koymans

Informatics Institute University of Amsterdam (version 22.5, 2023/02/14 13:15:31 UTC)

Tuesday, February 14, 2023

Polyalphabetic ciphers

- Use more than one (cipher) alphabet
- Use a changing cipher alphabet (often for each plaintext letter)
- Leon Battista Alberti (1404-1472)
- Cipher disk
- Johannes Trithemius (1462-1516)
- Tabula recta
- Giovan Battista Bellaso (1505-ca 1575)
- Keyed polyalphabetic cipher
- Giambattista della Porta (ca 1535-1615)
- Porta reduced table

Early polyalphabetic systems

Later polyalphabetic systems

Variations
Porta
Some more options

A few related systems

Alberti

Figure 1: Leon Battista Alberti (1404-1472)

- De Cifris (On Ciphers)
- Cipher disk
- Regularly change the cipher alphabet
- Communicate a change in ciphertext
- The outer ring is used for plaintext
- The inner ring is used for ciphertext

Johannes Trithemius (1462-1516)

- Tabula recta
- "proper table"
- square table
- letter square
- tableau
- Progressive system
- The cipher alphabet changes each letter by taking the next line in the tabula recta

Trithemius

Figure 2: Johannes Trithemius (1462-1516)

Tabula recta

Figure 3: Original tabula recta (no J, V; W at end)

Figure 4: Modern (progressive) tabula recta

- Mechanical device making irregular steps when pushing a lever
- With 17 -steps pattern $7,6,7,5,6,7,6,8,6,10,5,6,5,7,6,5,9$
- The period is an impressive $17 \cdot 26=442$

Periodic progressive systems

- Normal progression $0,1,2, \ldots$ is very regular
- Its period is 26
- To make things less predictable you can vary the progression
- A step pattern like $1,3,2$ generates the irregular progression $0,1,4,6,7,10,12, \ldots$
- The progression index (PGI) is $1+3+2=6$ and the progression length (L) is 3
- Now the period turns out to be $\frac{\operatorname{lcm}(\mathrm{PGI}, 26)}{\mathrm{PGI}} \cdot \mathrm{L}=\frac{\operatorname{lcm}(6,26)}{6} \cdot 3=39$
- The general formula for an alphabet of size N is $\frac{\operatorname{lcm}(\mathrm{PGI}, \mathrm{N})}{\mathrm{PGI}} \cdot \mathrm{L}=\frac{\mathrm{N}}{\operatorname{gcd}(\mathrm{PGI}, \mathrm{N})} \cdot \mathrm{L}$
- Cryptanalysis by William Friedman and his team
- William Friedman, Solomon Kullback, Frank Rowlett and Abraham Sinkov
- The challenge given was a 1135 letter cryptogram
- The challenge was broken - without computers - in a mere 2 hours and 41 minutes
- "Forgotten by history"
- Introduced the keyed polyalphabet
- Repeating-key cipher
- Later named after Blaise de Vigenère
- Used reciprocal alphabets
- Makes encryption and decryption identical operations
- Later named after Francis Beaufort

Vigenère

Figure 5: Blaise de Vigenère (1523-1596)

Blaise de Vigenère (1523-1596)

- Used Bellaso's ideas
- Combined the following ideas
- Tabula recta (now called Vigenère square)
- Repeating-key cipher
- Plaintext letters are along the top of the diagram
- Ciphertext letters inside the table
- Key letters are along the left side of the diagram
- A key letter equals the first letter of the cipher alphabet
plaintext

Figure 6: Vigenère table (modern encoding)

- Let $P=P_{0} P_{1} \ldots P_{n-1}$ be the plaintext
- Let $K=K_{0} K_{1} \ldots K_{p-1}$ be the key with period \mathbf{p}
- Then the cryptogram $C=C_{0} C_{1} \ldots C_{n-1}$ is given by
- $C_{i}=\mathcal{E}_{i}\left(P_{i}\right)=P_{i}+K_{i(\bmod p)}(\bmod 26)$
- For decryption we conclude
- $P_{i}=\mathcal{D}_{i}\left(C_{i}\right)=C_{i}-K_{i(\bmod p)}(\bmod 26)$
- Exchanging encryption and decryption is called "Variant Vigenère"

More room for confusion

- Assume we want to keep the simple mathematical relationship between plaintext letter and cryptogram letter: $C=P+K$
- Also assume we want to use legacy encoding
- The only way this works is by using an alternative Vigenère
- This non-standard table is what is used in "The Mathematics of Secrets"
- In this case the key letters are not the first elements of the cipher alphabet

Beaufort

Figure 8: Francis Beaufort (1774-1857)

Figure 7: Alternative Vigenère table (legacy encoding; used in book)

- Changes Vigenère square by starting with a mixed cipher alphabet
- Which is a Caesar $(k e y=1)$ shift of the atbash cipher
- Or if you want the atbash of a Caesar (key =-1) shift
- In modern encoding the Beaufort starting cipher alphabetcan also be described simply as a multiplicative cipher with factor -1
- In legacy encoding the Beaufort starting cipher alphabet
- must be described by a more complicated affine cipher with
- factor-1
- additive 2

Mathematical formulation of Beaufort's encryption

Let $P=P_{0} P_{1} \ldots P_{n-1}$ be the plaintext (in modern encoding)

- Let $K=K_{0} K_{1} \ldots K_{p-1}$ be the key with period p
- Then the cryptogram $C=C_{0} C_{1} \ldots C_{n-1}$ is given by
- $C_{i}=\mathcal{E}_{i}\left(P_{i}\right)=-P_{i}+K_{i(\bmod p)}(\bmod 26)$
- For decryption we conclude
- $P_{i}=\mathcal{D}_{i}\left(C_{i}\right)=-C_{i}+K_{i(\bmod p)}(\bmod 26)$
- Now we clearly see the symmetric role of encryption and decryption
- $P_{i}+C_{i}=C_{i}+P_{i}=K_{i(\bmod p)}(\bmod 26)$

Figure 9: Beaufort table

della Porta

Figure 10: Giambattista della Porta (ca 1535 - 1615)

Giambattista della Porta (ca 1535-1615)

- Introduced the first digraph substitution
- De furtivis Literarum Notis (1563)
- His scientific work on cryptography
- Introduced another polyalphabetic cipher based on a reduced size table - Porta's reduced table

	K L M
	NOPQRSTUVWXYZABCDEFGHIJKLM
	OPQRStUVWXYZNMABCDEFGHIJKL
	RStuvwxyznmabcdef
	QRSTUVWXYZNOLMABCDEFGHIJ
	RStuvwxyznopklmabcdefgh
	RSTUVWXYZNOPKLMABCDEFGH
	RSTUVWXYZNOPQJKLMABCDEFGH
	UVWXYZNOPQRIJ ${ }^{\text {d }}$ L MABCDEF
	WXYZNOPQRSHIJKLMABCDEF
	VWXYZNOPQRSHIJ K LMABCDEF
	WXYZNopQrstghit klmabcde
	UVWXYZNopQrstght jolmabcde
	vwxyznopqrstufghit klmabcde
	XYZNOPQRStuvefghit klmabc
	WXYZNopQrstuverghit klmabc
	XYZNopQrstuvwdefghit klmab
	ZNOPQRSTUVWXCDEFGHIJKLMA

Figure 11: Full Porta table

Reduced Porta table

Figure 12: Reduced Porta table

	BCDEFGHIJKLMNOPQRSTUVWXYZA
	FGHIJKLMNOPQRSTUVWXYZABCDE
	HIJ K L M Noplorstuvwxyzabcd
	IJ J LMN
	JKLMNOPQRSTUVWXYZABCDEFGH
	KLMNOPQRSTUVWXYZ
	LMNOPQRSTUVWXYZABCDEFGH
	OPQRSTUVWXYZABCDEFGHIJKLMN
	PQRStUVWXYZAbCDEFGHIJ J L M No
	RSTUVWXYZABCDEFGHIJ K L M Nop
	Stuvwxyzabcdefghit klm
	CDEFGHIJKL
	JKMNo

Figure 13: "Plain mixed up"-table

	C I PHERMXDUABFGJKLN
	PHERMXDUABFGJKLNOQSTVW
	ERMXDUABFGJKLNOQSTVWYZCIPH
	RMXDUABFGJKLNoQStVwYzCIPHE
	KLNoQStV
	DUABFGJKLNOQSTVWYZCIPHERMX
	U A
	A ${ }^{\text {b }}$
	FGJKLNOQSTVWYZCIPHERMXDUAB
	G J
	J K
	K
	L
	NoQStVWYZCIPH
	-
	x ${ }^{\text {d }}$
	TVWYZCIPHERMXDU
	VWYZCIPHERMXDUABFGJKLNoQSt
	DUABFG
	MXDUABFGJKLNo

Figure 14: "Cipher mixed up"-table

Figure 15: "Cipher and key mixed up"-table

Figure 16: "Cipher and key mixed up (sorted)"-table

Figure 17: "Plain, cipher and key mixed up"-table

в	AbfgoklnoqStvwyzciphermxdu
c	
D	mXdUAbFGJKLNoQStVwYZCipher
E	i Phermxduabfat klnoQstvwy
$\underset{F}{L}$	
g	
н	JKLNoQStVwYZCiphermx duabrg
	ERMXDUABFGJKLnoQStVwYZCiph
J	
	NoQStVwYzCiphermxduabrgokl
	dUAbFGJKLNoQStVwYZCiphermx
	StVwYZCiphermxduabrg joknoQ
U	
	y z ciphermxduabfationoqstvw
	PHERMXDUABFGJKLNOQStVWYZCI
	NoQstvwy

Figure 18: "Plain, cipher and key mixed up (sorted)"-table

	BQSNLTVWFYZAJGCUIPHEORM
B	FSTONVWYGZCBKJIAPHERQMXLDU
	d LNJ GoQ S UTVXbaWMYZCIKPHFER
	HbFUdGJKELNPMROIQStVAWYxZ
	JVWSQYZCKIPGNLHFERMXTDU
	KWYTSZCILPHJONEGRMXDVUAQB
	LYZVtcipnhek oor mad unabsf
	OCI
	SPPCZERMTXDQ WVUOABFGIJ
	A OQL
	THEICRMXVDUSYWAQBFGJPKLZN
	VERPIMXDWUATZYBSFGJKHLNCO
	WRMHPXDUYABVCZFTGJKLENOIQ
	EfGAUJKLRNohtmepstvwbyz

Figure 19: "Plain, cipher and key mixed up (all sorted)"-table

Figure 20: "Same mixed (Beaufort-style)" table

	AbCdefghit klmeorqrstuvwxy
	TRUYQPOWNLKZJHGFCABDXIVEM
в	
c	
D	XZYSEWVUMTRQIPONLKDJHGFACb
E	
	FEMIBASZDYwVCUTRQPGontKx Jh
H	
	EWVYAUTRSQPomNLKJHIGfCbzdx
J	
	RKJLPhGFocbidexiemats z Y wnve
	TLKNQJHGPFCBRDXIEMUASZYOWV
	Ywzmvutarepeonlouxhgacsbd

Figure 21: "Same mixed (Beaufort style and sorted)"-table

- Choose a set of alphabet strips from a given collection
- Each strip contains (two copies of) a permutation of the alphabet
- Put the plaintext inside one of the columns
- Read off the ciphertext from any other column
- Each of the other 25 columns is called a generatrix

Alphabet strip example

```
Mlain cryptoc
3CZINXFYQRTVWLADKOMJUBGEPHS
23 JCPGBZAXKKWREVDDTUFOYHMLSSIQN
12VEWOAMNFLHQGCUJTBYPZKXISR
```



```
3QRTVWLADNOMMUBGEPHSCZMINXPM
```



```
11 FbeEJALTMSXVQPNOHUWDIZYCGKR
M3FYOROM
23JCPGBZZAXKWREVDTUGOYYHMCZSINO
```


Figure 22: Encryption of vyand nadert water into ddtjw xtwsi vkrzix Source: Syllabus Hans van der Meer

Thomas efferson

解

Figure 23: William Friedman's alphabet strips device

- This is based on the same idea as the alphabet strips
- The alphabets are circumscribed on wheels mounted on a cylinder
- It is also called a Bazeries cylinder

Source: Syllabus Hans van der Meer

Rotor based systems

- Similar to a progressive system based on a mixed cipher alphabet
- The difference is that it also has a "regressive" component
- In fact the next cipher alphabet is a conjugation
of the current cipher alphabet with a "Caesar 1" cipher
- Let R be the (arbitrary) rotor permutation and C an additive permutation with addition 1

