Classical Cryptography

Basics: transpositions

Karst Koymans

Informatics Institute
University of Amsterdam
(version 22.6, 2023/02/16 13:53:54 UTC)

Friday, February 17, 2023
(1) Theoretic considerations

- Permutations
(2) Framework for cryptography
(3) Transpositions
- Geometric/Route ciphers
- Permutation ciphers
- Historic examples

Outline

(1) Theoretic considerations

- Permutations

2 Framework for cryptography
(3) Transpositions

- Geometric/Route ciphers
- Permutation ciphers
- Historic examples

Substitutions versus Transpositions

- Substitutions
- transform objects into or replace objects by other objects
- keeping the positions of these objects the same
- Transpositions
- put the objects into a different position
- keeping the identity of these objects the same
- Both operations can be represented by permutations
- with paying careful attention to the semantics of each permutation and its inverse

Outline

(1) Theoretic considerations

- Permutations

2 Framework for cryptography
(3) Transpositions

- Geometric/Route ciphers
- Permutation ciphers
- Historic examples

Is this a permutation?

And now?

And now?

Do we order by identity, alphabetically? $A<B<C<D$?

Or maybe like this?

Or maybe like this?

Do we order by size? tiny<small<big<huge $(\mathrm{C}<\mathrm{B}<\mathrm{D}<\mathrm{A})$?

And more options...

And more options...

Ordered by color: red<orange $<$ green $<$ blue $(\mathrm{A}<\mathrm{D}<\mathrm{C}<\mathrm{B})$

Case studies...

- In all of the following examples we have that
- The position of A in the top row is the same as the position of C in the bottom row
- The position of B in the top row is the same as the position of A in the bottom row
- The position of C in the top row is the same as the position of D in the bottom row
- The position of D in the top row is the same as the position of B in the bottom row
- So in some sense we always have $\mathrm{A} \rightarrow \mathrm{C} \rightarrow \mathrm{D} \rightarrow \mathrm{B} \rightarrow \mathrm{A}$
- With the standard notation $\left(\begin{array}{llll}A & B & C & D \\ C & A & D & B\end{array}\right)$

Keeping position, but changing identity (1)

Keeping position, but changing identity (2)

Keeping position, but changing identity (3)

$$
\begin{array}{lll}
1 & 2 & 3 \\
4 & \left(\begin{array}{llll}
A & B & C & D \\
C & A & D & B
\end{array}\right) \\
\left(\begin{array}{llll}
A & D & C & B \\
C & B & D & A
\end{array}\right) & \begin{array}{llll}
1 & 4 & 3 & 2 \\
\hline
\end{array}
\end{array}
$$

Case studies for positions...

- We still have that
- The position of A in the top row is the same as the position of C in the bottom row
- The position of B in the top row is the same as the position of A in the bottom row
- The position of C in the top row is the same as the position of D in the bottom row
- The position of D in the top row is the same as the position of B in the bottom row
- What changes is that we look at the effect on the positions
- Also notice the direction of the arrows from bottom to top
- which as we will see is more natural

Legacy and modern notation for positions

- It would be consistent to also use modern notation for positions and their permutations, like this

$$
\left(\begin{array}{llll}
0 & 1 & 2 & 3 \\
1 & 3 & 2 & 0
\end{array}\right)
$$

- But in order not to create more confusion at this stage, I will use the more standard notation like

$$
\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
2 & 4 & 3 & 1
\end{array}\right)
$$

Keeping identity, but changing position (1)

Keeping identity, but changing position (2)

Keeping identity, but changing position (3)

$$
\left.\begin{array}{lll}
A & B & C \\
D
\end{array} \quad\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
3 & 4 & 2 & 1
\end{array}\right), ~ \begin{array}{lll}
\hline C & B & D
\end{array}\right]
$$

Commuting diagram (before: f; after: g)

- P is the set of positions
- O is the set of objects (or identities)
- σ is a substitution (of identity) permutation
- τ is a transposition (change of position) permutation

Permutation directions

- Consider the transformation from top (f) to bottom (g)
- $g=\sigma \circ f \circ \tau$
- $g^{-1}=\tau^{-1} \circ f^{-1} \circ \sigma^{-1}$
- Notice the direction of the permutations and their inverses
- The substitution permutation from top (f) to bottom (g)
- The transposition permutation from bottom (g) to top (f)
- When reversing top and bottom things turn around
- $f=\sigma^{-1} \circ g \circ \tau^{-1}$
- $f^{-1}=\tau \circ g^{-1} \circ \sigma$

Outline

(1) Theoretic considerations

- Permutations

2 Framework for cryptography
(3) Transpositions

- Geometric/Route ciphers
- Permutation ciphers
- Historic examples

Texts as strings or sequences of characters

- P is n, where $n=\{0, \ldots, n-1\}$
- O is $\{\mathrm{A}, \mathrm{B}, \mathrm{C}, \ldots, \mathrm{X}, \mathrm{Y}, \mathrm{Z}\}$, our alphabet
- f is the plaintext ${ }^{1}$ before encryption
- or the ciphertext before decryption
- $g=\sigma \circ f \circ \tau$ is the ciphertext after encryption
- or the plaintext after decryption

[^0]
Relation between transposition and substitution

- Even though transposition and substitution seem unrelated they are kind of dual to each other
- Both are permutations (of position, respectively identity)
- Transposition contributes to Shannon's "diffusion"
- Substitution contributes to Shannon's "confusion"
- Taken together we might ${ }^{2}$ call them
- su(b)positions
- trans(s)titutions

[^1]
Relaxing bijectivity of substitutions and transpositions

$$
P^{\prime} \underset{\tau}{\stackrel{\tau^{\prime}}{\longrightarrow}} P \xrightarrow{f} O_{\sigma}^{\stackrel{\sigma^{\prime}}{\longrightarrow}} O^{\prime}
$$

- In the case that f is the given plaintext
- σ only needs to be injective, but not surjective
- $i d_{o}=\sigma^{\prime} \circ \sigma$
- O^{\prime} can be "bigger" than O
- τ only needs to be surjective, but not injective
- $i d_{P}=\tau \circ \tau^{\prime}$
- P^{\prime} can be "bigger" than P

Expansion and compression

- Suppose that P^{\prime} is indeed "bigger" than P
- We might use the following terminology if $i d_{P}=\tau \circ \tau^{\prime}$
- τ is used for expansion
- τ^{\prime} is a corresponding compression
- Mathematically speaking τ^{\prime} is a section of τ

Outline

(7) Theoretic considerations

- Permutations
(2) Framework for cryptography
(3) Transpositions
- Geometric/Route ciphers
- Permutation ciphers
- Historic examples

Transposition that doesn't hide much

Internet meme (Cambridge research ???)

Aoccdrnig to a rscheearch at Cmabrigde Uinervtisy, it deosn't mttaer in waht oredr the ltteers in a wrod are, the olny iprmoatnt tihng is taht the frist and Isat ltteer be at the rghit pclae. The rset can be a toatl mses and you can sitll raed it wouthit porbelm. Tihs is bcuseae the huamn mnid deos not raed ervey Iteter by istlef, but the wrod as a wlohe.
(" (sic)" deleted; "e" changed into "a"; comma inserted)

[^2]
Transposition that doesn't hide much

Internet meme (Cambridge research ???)

According to a researcher at Cambridge University, it doesn't matter in what order the letters in a word are, the only important thing is that the first and last letter be at the right place. The rest can be a total mess and you can still read it without problem. This is because the human mind does not read every letter by itself, but the word as a whole.
(" (sic)" deleted; "e" changed into "a"; comma inserted)

[^3]
Outline

(1) Theoretic considerations

- Permutations
(2) Framework for cryptography
(3) Transpositions
- Geometric/Route ciphers
- Permutation ciphers
- Historic examples

Generating transpositions (1): Skytale

> CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=1698345

The Skytale (Scytale)

- Already used by the Spartan general Lysander
- Narrow parchment wound around a piece of wood of a given diameter
- Each side of the communication channel needs an identical piece of wood
- The length of wood is not important, as long as the message "fits"
- Encryption corresponds to a simple columnar transposition ${ }^{3}$
- Decryption corresponds to a "row transposition"

[^4]
Simple columnar (route) transposition

$$
\left(\begin{array}{lccc}
0 & 1 & \cdots & c-1 \\
c & c+1 & \cdots & 2 c-1 \\
\cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \\
\cdots \cdots \cdots \cdots \cdots & \cdots \cdots & \cdots \cdots
\end{array}\right)
$$

- r corresponds to the circumference (measured in letters) of the wooden stick
- The total length of the message is rc
- The plaintext is written in row by row
- The ciphertext is read out column by column

Formulas relating a text string to the rectangular block

- From rectangle to string row by row

$$
(i, j) \mapsto i c+j
$$

- From string to rectangle row by row

$$
i \mapsto([i / c], i(\bmod c))
$$

- From rectangle to string column by column

$$
(i, j) \mapsto j r+i
$$

- From string to rectangle column by column

$$
i \mapsto(i(\bmod r),[i / r])
$$

Generating transpositions (2): Railfence

- A railfence cipher has as key information only the depth of the fence
- and maybe a starting direction (down or up)
- Items are written in a zigzag pattern going down and up (or up and down) the fence
- It can be described as an inefficient row transposition with holes (grille)
- Also, by zigzagging left and right (or right and left), it can be described as a columnar transposition with holes

Generating transpositions (3): Routes

There are many more ways to traverse a rectangle or for that matter any other geometric shape

Exercise

Match Colonel Parker Hitt's methods from Figure 3.2 in Holden's book with the route ciphers from Figure 2.2 in Hans van der Meer's syllabus

Outline

(1) Theoretic considerations

- Permutations

(2) Framework for cryptography

(3) Transpositions

- Geometric/Route ciphers
- Permutation ciphers
- Historic examples

Permutation(s of positions) ciphers

- Divide the plaintext into blocks of n letters and apply (the same) position permutation to each block separately
- The last block is padded with "nulls"
- The permutation maps a ciphertext position to a plaintext position

$$
\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
2 & 4 & 3 & 1
\end{array}\right) \quad \begin{gathered}
\text { cipher position } \\
\text { plain position }
\end{gathered}
$$

- This permutation is the same as given by the following mapping
- Warning: confusion! A permutation or its inverse?

In The Mathematics of Secrets this is also denoted by the string "4132"

- A string can be remembered by using a keyword, like "TALE" for the sequence 4132, using the alphabetic order

Permutation cipher compositions (products)

- Suppose the block sizes are p and q
- Then the block size of the product is given by
- $\operatorname{Icm}(p, q)$, the least common multiple of p and q
- Hence in the case of $p=q$ you get nothing new

Keyed columnar transpositions

- These are compositions (products) of permutations and routes
- First the permutation and then the "row-in-column-out" route
- What happens if you do it the other way around?
- They offer a better diffusion of the plaintext throughout the whole ciphertext
- There is still no confusion though
- Shannon argued that both confusion and diffusion are important
- We will see later how modern block ciphers achieve both

Outline

(1) Theoretic considerations

- Permutations

(2) Framework for cryptography

(3) Transpositions

- Geometric/Route ciphers
- Permutation ciphers
- Historic examples

A historic transposition

Battle of Fredericksburg

Washington, D.C., November 25, 1862
To general Burnside, Falmouth, Virginia

Can Inn Ale me withe 2 oar our Ann pas Ann me flesh ends N. V. Corn Inn out with U cud Inn heaven day nest We roe Moore Tom darkey hat Greek Why Hawk of Abbott Inn B chewed I if.

From whom?

Transpositions

Adapted from slides by Hans van der Meer

Civil War

Message of president Lincoln to general major Burnside, dated Washington, November 25, 1862

BURNSIDE, Falmouth, Virginia Can Inn Ale me withe 2 oar our Ann pas Ann me flesh ends N. V. Corn Inn out with U cud Inn heaven day nest We roe Moore Tom darkey hat Greek Why Hawk of Abbott Inn B chewed I if.

BURNSIDE, Falmouth, Virginia If I should be in a boat off Aquia Creek at dark tomorrow, Wednesday evening, could you, without inconvenience, meet me and pass an hour or two with me? A. Lincoln

Lincoln - June 1, 1863

PLAINTEXT For Colonel Ludlow. Richardson and Brown, correspondents of the Tribune, captured at Vicksburg, are detained at Richmond. Please ascertain why they are detained and get them off if you can. The President U.S.

CRYPTOGRAM guard adam them they at wayland brown for kissing venus correspondents at neptune are off nelly turning up can get why detained tribune and times richardson the are ascertain and you fills belly this if detained please odor of ludlow commissioner

Union codebook

indicator GUARD
5x7 route tramp
null without meaning
filler on empty place
codewords
adam = President US nelly $=4: 30 \mathrm{pm}$ neptune $=$ Richmond odor = Vicksburg
 wayland = captured venus = colonel

Indicator GUARD

\rightarrow	\downarrow	STOP	\downarrow	\leftarrow
kissing	\downarrow	commissioner	\downarrow	times
for	venus	Ludlow	Richardson	and
Brown	correspondents	of	the	Tribune
wayland	at	odor	are	detained
at	neptune	please	ascertain	why
they	are	detained	and	get
them	off	if	you	can
adam	nelly	this	fills	up
\uparrow	turning	\uparrow	belly	\uparrow
$\uparrow ~$	\downarrow	\uparrow	\leftarrow	\uparrow
\uparrow START \uparrow	\rightarrow	\rightarrow	\rightarrow	\uparrow

Route transposition

M	A	K	K	E
R	S	S	T	A
A	K	T	U	W
W	I	L	D	G
E	R	A	A	S

plaintext: MAKKERS STAAKT UW WILD GERAAS cryptogram: MRAWE ASKIR KSTLA KTUDA EAWGS

Route transposition

3	16	9	22	15							
:---	:---	:---	:---	:---	:---		20	8	21	14	2
:---	:---	:---	:---	:---		7	25	13	1	19	
:---	:---	:---	:---	:---		24	12	5	18	6	
| :--- | :--- | :--- | :--- | :--- | | 11 | 4 | 17 | 10 | 23 |
| :--- | :--- | :--- | :--- | :--- |

- exotic routes are knight tour, magic square
- different routes for write-in and read-out
- spiral routes show readable fragments

Column transposition

M	U	S	K	U	S
2	5	3	1	6	4
D	E	V	R	A	G
E	N	V	A	N	H
E	T	T	E	N	T
A	M	E	N	Z	Y
N	N	O	G	G	E
H	E	I	M	X	X

\leftarrow transposition block filled completely
pt: DE VRAGEN VAN HET TENTAMEN ZIJN NOG GEHEIM XX
ct: RAENG MDEEA NHVVT EOIGH TYEXE NTMNE ANNZG X

Column division is unambiguous
RAENGM DEEANH VVTEOI GHTYEX ENTMNE ANNZGX

Transposition key

	M	U	S	K	U	S
\rightarrow	M	U	S	1	U	S
\rightarrow	2	U	S	1	U	S
\rightarrow	2	U	3	1	U	S
\rightarrow	2	U	3	1	U	4
\rightarrow	2	5	3	1	U	4
\rightarrow	2	5	3	1	6	4
\rightarrow	2	5	3	1	6	4

Replace the letters of the key, one by one, by digits in alphabetic order

MUSKUS $\rightarrow 253164$

Column transposition

M	U	S	K	U	S
2	5	3	1	6	4
D	E	V	R	A	G
E	N	V	A	N	H
E	T	T	E	N	T
A	M	E	N	Z	Y
N	N	O	C	G	E
H	E	I	M		

\leftarrow transposition block not completely filled
pt: DE VRAGEN VAN HET TENTAMEN ZIJN NOG GEHEIM
ct: RAENG MDEEA NHVVT EOIGH TYEEN TMNEA NNZG
Column division ambiguous
RAENGM DEEANH VVTEOI GHTYEE NTMNE ANNZG
RAENGM DEEANH VVTEOI GHTYE ENTMNE ANNZG
RAENG MDEEA NHVVTE OIGHTY EENTMN EANNZG

Column transposition

2	1	4	7	3	6
	A	5			
A	A		N		V
O		P	L		
R	L	P	E	A	
O	H	A	R	B	
O	R	D	O	O	R
J	A	P	A	N	

```
pt: AANVAL OP PEARL HARBOUR DOOR JAPAN
ct: ALUAA OROJN LERON APHRP VABRO PADA
```

Irregular block makes division even harder

- Japanse K1 around 1940 J19 encicode
- Zendia transpositions

Dubbele transpositie

H	A	R	I	N	G	T	O

L	E	E	S	B	R	I	L
5	2	3	8	1	7	4	6
E	O	N	A	A	I	C	A
N	D	D	O	E	N	M	B
D	E	V	R	R	E	V	A
I	V	Z	E	R	L	U	L
A	N	R	G	L	D	E	E
L	A						

pt: DEN BRIEL VOOR DE GEUZEN GEVALLEN ALVA NAAR MADRID
ct: AERRL ODEVN ANDVZ RGMVU EENDI ALABA LEINE LDAOR EG
US Army Double Transposition

Turning grille

N S L I	N S L	N S L	N S L
R T C G	R T C G	R T C G	R T C G
I E O S	I E O S	E O S	I EOS
M E E E	M E E E	M E E E	M E E E
0°	90º	180oํ	270ํ

pt: SIC ERGO ELEMENTIS
ct: NSLIR TCGIE OSMEE E

Also called a "Fleissner grille" Oldest: Stadtholder Willem IV in 1745
Latest: German army in 1917

[^0]: ${ }^{1}$ Note that in this case f doesn't need to be injective nor surjective

[^1]: ${ }^{2}$ This is in no way standard or accepted terminology

[^2]: Source: https://www.mrc-cbu.cam.ac.uk/people/matt.davis/cmabridge/

[^3]: Source: https://www.mrc-cbu.cam.ac.uk/people/matt.davis/cmabridge/

[^4]: ${ }^{3}$ Some call this an example of a route transposition

